"e

(®)

THE INTERNATIONAL CERTIFICATION NETWORK

CERTIFICATE

has issued an IQNet recognized certificate that the organization
Private joint-stock Company "Scientific and Production Association "Thermoprylad" named after V. Lakh" (PJSC "Thermoprylad") Ukraine, 79060, Lviv, Naukova str. 3
for the following scope:

Development, manufacturing, delivery and modernization of items for measurement and control of temperature, including for nuclear power EAC: 18
has implemented and maintains a
QUALITY MANAGEMENT SYSTEM
which fulfils the requirements of the following standard
ISO 9001:2015

qualityaustria
Succeed with Quality

CERTIFICATE

This qualityaustria certificate confirms the application and further development of an effective

Quality Austria - Trainings, Zertifizierungs und Begutachtungs GmbH awards this qualityaustria certificate to the following organisation:

Development, manufacturing, delivery and modernization of items for measurement and control of temperature, including for nuclear power

The validity of the qualityaustria certificate will be maintained by annual surveillance audits and one renewal audit after three years.

QUALITY MANAGEMENT SYSTEM
complying with the requirements of standard

ISO 9001:2015

Registration No.: 20908/0
Date of initial issue: 25 July 2018
Valid until: 24 July 2021

Q qualityaustria
\qquad
Vienna, 25 July 2018

Quality Austria - Trainings, Zertifizierungs und Begutachtungs GmbH, AT-1010 Vienna, Zelinkagasse 10/3

Signatures removed for security reasons

THERMOPRYLAD

3, Naukova str., Lviv, 79060, Ukraine
Tel. +38(032) 2630308
+38(032) 2632114
Fax:+38(032) 2631361
E-mail: thermo@mail.Iviv.ua
www.thermo.Iviv.ua

Сертифікат

 N. PM- $0.03 .093-9$

 решияи:
 coypuresum nim ill

 2. Oremeeran-

4. Mpectanomeneras nectument

- оver of oumee nocromana 0 иy

 CORAMCOBARO:

nxamgere yonpan

\qquad THERMOPRYLAD

Dear Sirs,
Scientific and Production Association "THERMOPRYLAD" named after V. Lakh was established in 1956 and is a specialized company for the development and production of temperature control devices and systems.

We would like to call your attention to a new version of our catalogue.
Here you will find the information on control devices for the temperature from minus 200 up to $2500^{\circ} \mathrm{C}$:

- Thermocouple of resistance (resistance thermometers);
- thermoelectric Couples (thermocouples);
- thermocouples with unified signal;
- digital thermometers including portable ones;
- temperature regulators, alarm devices;
- pyrometric transformers and pyrometers;
- hygrometers and humidity regulators;
- other devices and tools (measuring transducers, spark protection barriers, compensation devices, junction boxes, reference and other metrological supplies, etc.).

This catalogue of measuring instruments (MI) for temperature control does not cover the entire range of devices released by our Association.

Many years of experience, high professionalism of our team, the use of the completing units of famous world firms allows us to constantly expand and modernize the nomenclature of new MI.

Our Association manufactures temperature control MI , that replace foreign ones, as well as MI of non-standard and old (discontinued from production) grading.

All MI for temperature control are subjected to acceptance tests, calibration in the calibration laboratory of the Association or check-out. Terms of delivery are stipulated by a contract.

Most of the serially released MI is listed in the State Register of Ukraine and has the Pattern Approval Certificates. Declarations of Conformity are issued for the MI subject to technical regulations.

The quality management system has been implemented and certified at the enterprise in accordance with ISO 9001: 2008.

We are able to satisfy all your requests and requirements and to provide all the necessary services related to the temperature control.

We look forward to mutually beneficial cooperation with you.

With best regards,
N. Guk

General Information

1. Thermocouple of resistance

Thermocouple of resistance manufactured by the enterprise meet the following standards:
ДСТУ IEC 60751: 2012;
ДСТУ ГОСТ 6651: 2014.
Below is a brief summary on the types of Thermocouple of resistance, conventional indication of their nominal static conversion characteristics NSC), tolerance classes, tolerances (maximum permissible deviations from NSC), and measuring ranges, circuit diagrams of internal wires.

Designation of type, temperature coefficients and tolerance classes of Thermocouple of resistance and sensing elements

Thermocouple of resistance type	Designation	$\alpha,{ }^{\circ} \mathrm{C}^{-1}$	Tolerance class		
			For wire-wound sensing elements (SE)	For film-type SE	For thermocouple of resistance
Platinum	Pt	0,00385	W0.1, W0.15, W0.3, W0.6	$\begin{gathered} \text { F0.1, F0.15, } \\ \text { F0.3, F0. } \end{gathered}$	AA, A, B, C
	П*	0,00391	AA, A, B, C	AA, A, B, C	AA, A, B, C
Copper	M*	0,00428	A, B, C	-	A, B, C
Nickel	H	0,00617	C	-	C
* When exporting the designation of Π type is changed for $\mathrm{Pt}(391), \mathrm{M}$ for Cu					

Conventional designator of the nominal static conversion characteristic (NSC) for Thermocouple of resistance

Thermocouple of resistance type	Nominal resistance value with $0^{\circ} \mathrm{C}, \mathrm{R}_{0}, \mathrm{O}$	Conventional designator of NSC*		
		$\alpha=0,003851{ }^{\circ} \mathrm{C}^{-1}$	$\alpha=0,00391{ }^{\circ} \mathrm{C}^{-1}$	
			Domestic market	For export
Platinum	10	Pt10	$10 \square$	Pt(391)10
	50	Pt50	50п	Pt(391)50
	100	Pt100	100\%	Pt(391)100
	500	Pt500	500П	Pt(391)500
	1000	Pt1000	1000П	Pt(391)1000
Copper		-	$\alpha=0,00428{ }^{\circ} \mathrm{C}^{-1}$	
	50		50M	Cu50
	100		100M	Cu100

* At the customer's request it is possible to produce thermocouple of resistance from NSC gr. 21 with $\alpha=0,00391^{\circ} \mathrm{C}^{-1}$; gr. $23,50 \mathrm{M}, 100 \mathrm{M}$ with $\alpha=0,00426^{\circ} \mathrm{C}^{-1}$.

Tolerances and measurement ranges
for Thermocouple of resistance and sensing elements

Tolerance class	Tolerance, ${ }^{\circ} \mathrm{C}$	Measurement range, ${ }^{\circ} \mathrm{C}$			
		Platinum		Copper thermocouple of resistance, SE	Nickel thermocouple of resistance, SE
		For wire-wound sensing elements (SE)	For film-type SE		
$\begin{gathered} \text { AA } \\ \text { W0.1 } \\ \text { F0.1 } \end{gathered}$	$\pm(0.1+0.0017\|t\|)$	$\begin{aligned} & \text { from }-50 \text { to } \\ & +250 \end{aligned}$	$\begin{gathered} \text { from } 0 \text { to } \\ +150 \end{gathered}$	-	-
	$\pm(0.15+0.002\|t\|)$	from -100 to $+450$	$\begin{aligned} & \text { from }-30 \text { to } \\ & +300 \end{aligned}$	$\begin{gathered} \text { from }-50 \text { to } \\ +120 \end{gathered}$	-
$\begin{gathered} \text { B } \\ \text { W0.3 } \\ \text { F0.3 } \end{gathered}$	$\pm(0.3+0.005\|t\|)$	from -196 to $+660$	from -50 to $+500$	$\begin{aligned} & \text { from }-50 \text { to } \\ & +200 \end{aligned}$	-
$\begin{gathered} \text { C } \\ \text { W0.6 } \\ \text { F0.6 } \end{gathered}$	$\pm(0.6+0.01\|t\|)$	from -196 to $+660$	from -50 to $+600$	$\begin{gathered} \text { from }-180 \text { to } \\ +200 \end{gathered}$	$\begin{gathered} \text { from }-60 \text { to } \\ +180 \end{gathered}$

Note - $|t|$ - absolute temperature value.
Scheme of internal wires connections for Thermocouple of resistance *
Number of SE

[^0]
2. Thermoelectric couples

Thermoelectric Couples made by the enterprise meet the following standards:
ДСТУ IEC 60584-1: 2009;
ДСТУ IEC 60584-2: 2009;
ДСТУ 2837-94 (ГОСТ 3044-94);
ДСТУ 2857 (ГОСТ 6616-94)
Below is a brief summary on the types of the most used thermoelectric couples, their nominal static conversion characteristics (NSC) and tolerance classes.

Letter designation of nominal static conversion characteristic
(NSC) for thermoelectric Couples (TC)

Type of TC	Letter designation of NSC	Temperature measuring range for long-term use, ${ }^{\circ} \mathrm{C}$	Limit temperature for short-term use, ${ }^{\circ} \mathrm{C}$
ТПП-13 Platinum Rhodium - Platinum (Platinum - 13 \%)	R	0-1300	1600
ТПП-10 Platinum Rhodium - Platinum (Platinum 10\%)	S	0-1300	1600
TחP Platinum Rhodium Platinum Rhodium	B	600-1600	1700
THH Nichrosil-Nisil	N	minus 270-1200	1300
TXA Chromel - Alumel	K	minus 270-1200	1300
TXK Chromel - Kopel	L	minus 200-600	800
TBP Wolfram-Rhenium Wolfram-Rhenium	$\begin{aligned} & \text { A-1 } \\ & \text { A-2 } \\ & \text { A-3 } \end{aligned}$	$\begin{aligned} & 0-2200 \\ & 0-1800 \\ & 0-1800 \end{aligned}$	2500

Tolerance classes for (TC)

Types	Tolerance class 1	Tolerance class 2	Tolerance class 3	
Type R, type S Temperature rage Tolerance value Temperature rage Tolerance value	$\begin{aligned} & \text { from } 0^{\circ} \mathrm{C} \text { to } 1100^{\circ} \mathrm{C} \\ & \pm 1^{\circ} \mathrm{C} \\ & \text { from } 0^{\circ} \mathrm{C} \text { to } 1600^{\circ} \mathrm{C} \\ & \pm[1+0,003(\mathrm{t}-1100)]^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { from } 0^{\circ} \mathrm{C} \text { to } 600^{\circ} \mathrm{C} \\ & \pm 1,5^{\circ} \mathrm{C} \\ & \text { from } 600^{\circ} \mathrm{C} \text { to } 1600^{\circ} \mathrm{C} \\ & \pm 0,0025^{\circ} \mathrm{C} \end{aligned}$		
Type B Temperature rage Tolerance value Temperature rage Tolerance value		from $600^{\circ} \mathrm{C}$ to 1700 C $\pm 0,0025 x\|t\|$	```from 600 % to 800 % \pm4}\mp@subsup{}{}{\circ}\textrm{C from }80\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ to }170\mp@subsup{0}{}{\circ}\textrm{C \pm0,005x\|t	```
Type K, type N Temperature rage Tolerance value Temperature rage Tolerance value	$\begin{aligned} & \text { from }-40^{\circ} \mathrm{C} \text { to } 375^{\circ} \mathrm{C} \\ & \pm 1,5^{\circ} \mathrm{C} \\ & \text { from } 375^{\circ} \mathrm{C} \text { to } 1000^{\circ} \mathrm{C} \\ & \pm 0,004 \mathrm{x}\|\mathrm{t}\| \\ & \hline \end{aligned}$	$\begin{aligned} & \text { from }-40^{\circ} \mathrm{C} \text { to } 333^{\circ} \mathrm{C} \\ & \pm 2,5^{\circ} \mathrm{C} \\ & \text { from } 333^{\circ} \mathrm{C} \text { to } 1200^{\circ} \mathrm{C} \\ & \pm 0,0075 \mathrm{x}\|\mathrm{t}\| \end{aligned}$	$\begin{aligned} & \text { from }-167^{\circ} \mathrm{C} \text { to } 40^{\circ} \mathrm{C} \\ & \pm 2,5^{\circ} \mathrm{C} \\ & \text { from }-200^{\circ} \mathrm{C} \text { to }-167^{\circ} \mathrm{C} \\ & \pm 0,015 \mathrm{x}\|\mathrm{t}\| \\ & \hline \end{aligned}$	
Type L Temperature rage Tolerance value Temperature rage Tolerance value		$\begin{aligned} & \text { from }-40^{\circ} \mathrm{C} \text { to } 300^{\circ} \mathrm{C} \\ & \pm 2,5^{\circ} \mathrm{C} \\ & \text { from } 300^{\circ} \mathrm{C} \text { to } 800^{\circ} \mathrm{C} \\ & \pm 0,0075 \mathrm{x}\|\mathrm{t}\| \end{aligned}$	$\begin{aligned} & \text { from }-100^{\circ} \mathrm{C} \text { to } 100^{\circ} \mathrm{C} \\ & \pm 2,5^{\circ} \mathrm{C} \\ & \text { from }-200^{\circ} \mathrm{C} \text { to }-100^{\circ} \mathrm{C} \\ & \pm 0,015 \mathrm{x}\|\mathrm{t}\| \end{aligned}$	
Type A-1, A-2, A-3 Temperature rage Tolerance value	-	$\begin{aligned} & \text { from } 1000^{\circ} \mathrm{C} \text { to } 2500^{\circ} \mathrm{C} \\ & \pm 0,005 \mathrm{x}\|\mathrm{t}\| \end{aligned}$	$\begin{aligned} & \text { from } 1000^{\circ} \mathrm{C} \text { to } 2500^{\circ} \mathrm{C} \\ & \pm 0,007 \mathrm{t} \mid \end{aligned}$	

Table of steel conformity

Steel grade	EN	AISI
08×13	1,400	403
$12 \times 18 \mathrm{H} 10 \mathrm{~T}$	1,4541	321
$08 \times 18 \mathrm{H} 10 \mathrm{~T}$	1,4541	321
08 X18H125	1,4550	347
$10 \times 17 \mathrm{H} 13 \mathrm{M} 2 \mathrm{~T}$	1,4571	$(316 \mathrm{Ti})$
20×13	1,4021	420
$15 \times 25 \mathrm{~T}$	1,4746	446
XH45Ю	-	-

To order measuring instruments (MI) of temperature control it is necessary to send a written order to the Private Joint-Stock Company "Scientific and Production Association "THERMOPRYLAD":

- by post: 3, Naukova str., Lviv, 79060;
- by fax: +38(032) 26313 61;
- by e-mail: thermo@mail.Iviv.ua
with the specification of the MI , which indicates full technical specifications, quantity, terms of shipping (by mail, rail, "Nova Poshta", UPS, EMS, etc.), as well as all postal, payment details for MI shipping, contact telephone numbers and surname of the customer for contact calls to him.

On the basis of the customer's order, we issue an invoice for 100% prepayment, taking into account all taxes established in Ukraine, cost of packing materials, transportation tariffs (if the order does not specify "self-delivery" or delivery on the terms of EXW) and customs clearance (for export).

Products of the Association are sent to the customer on terms specified in the order within 5-30 days from the date of payment, depending on the type and number of devices.

In the order for Thermocouple of resistance and thermoelectric couple, it is necessary to specify:

| Type | NSC | Fig. | Temperature
 measuring
 range, ${ }^{\circ} \mathrm{C}$ | Scheme of
 connections | Class | Mounting
 length L,
 mm | Protective
 armature
 material,
 number of SE | Insulation
 of working
 end (for
 TXA/TXK) | Number,
 pcs. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TCП-1088 | 50Π | 1 | minus 200-
 450 | Three-wire
 circuit | A | 160 | 12×18 H10 T | - | 5 |
| TXA-2088 | K | 2 | minus $50-$
 600 | - | 2 | 320 | 12 X18 H10T;
 2 sensing
 elements | (non)
 insulated | 10 |

In the order for pyrometers it is necessary to specify:
a) for portable pyrometers:

- working range, ${ }^{\circ} \mathrm{C}$;
- indicator of visibility (minimum distance of the pyrometer from the object of measurement and the minimum size of the object of measurement);
- ambient temperature;
- brief description of the technological process.
b) for stationary pyrometers:
- operating range, ${ }^{\circ} \mathrm{C}$ (from ... to ...) in the interval;
- control temperature (if required);
- analogue signal level (0-5mA or 4-20mA);
- minimum distance of the primary pyrometric converter from the object of measurement;
- minimum linear dimension of the object of measurement;
- distance from the primary pyrometric converter to the measuring transducer (cable length);
- ambient temperature in the zone where the primary pyrometric converter is installed (presence of cooling device);
- object of measurement: oven, bath, inductor, presence of a window or opening (its diameter), other;
- brief description of the technological process;
- type of registrar (if used);
- distance from the measuring transducer to the computer (RS-interface type).

In the order for regulators and alarm devices it is necessary to specify:

- sensor type;
- output (relay, semistor, etc.);
- need of output for an alarm signal;
- communication with the computer;
- work in the program mode;
- supply voltage.

In the order for thermocouples with a standardized output signal it is necessary to specify:

- type;
- temperature range, ${ }^{\circ} \mathrm{C}$ (from ... to ...);
- type of output signal;
- length of the working part;
- presence of the fitting.

In the order for thermocouples with unified signal:

- type of NSC;
- type of the casing;
- power parameters.

The order should also include:

- full name of the enterprise (company) of the customer;
- legal address;
- postal address;
- code EDRPOU (code in accordance with the Unified State Register of Enterprises and Organizations of Ukraine);
- Extract from the Register of VAT Payers;
-individual tax number;
- fax number;
- telephone number;
- surname, name, patronymic of the customer.

Notes for consumers

In order to determine which temperature sensor you would need, a number of factors should be considered.

If you need to measure a temperature which doesn't exceed $200^{\circ} \mathrm{C}$ by platinum THERMOCOUPLE OF RESISTANCE, you should specify it in the order, because the outputs of the sensitive element, as well as the conductors from the sensitive element to the output terminals of thermocouple of resistance, the solder material can be made of cheaper materials, which affects the price of the device.

Therefore, you need to specify the upper range of measured temperatures in the order.
Similarly, it is necessary to indicate the actual maximum measured temperature with thermoelectric couples, since the price of the protective armature for sensors made from high temperature steel grades 15 X 25 T , XH45 F is more than two to three times higher than the price of conventional steels.

We manufacture temperature control devices with different NSC, and also constantly develop new types.
Therefore, we would ask you to send all your preferences on the process of operation to our address:
Private Joint-Stock Company "Scientific and Production Association "THERMOPRYLAD".
3, Naukova str., Lviv, 79060, Ukraine
Tel. +38(032) 2630308
+38(032) 2632114
Fax:+38(032) 2631361
website: www.thermo.Iviv.ua
e-mail: thermo@mail.lviv.ua
I Thermocouples of resistance of wide spread application 15
ТСП-1088, ТСМ-1088 16
ТСП-1187, ТСМ-1187 18
TCM-1188 20
ТСП-1287 21
ТСП-1288, ТСМ-1288 24
TCMP-1291 26
ТСП-1388, ТСМ-1388 27
ТСП-1588 29
ТСПР-0196 30
ТСП-0287 31
TCM-0387 32
TCM-0890 33
TOM-0591 35
TOMI-0591 36
ТСП-0889 37
ТСП-0987, ТСМ-0987 38
ТСП-1290, ТСП-1290 39
TCM-364-01 40
ТСП-8052 41
Platinum sensitive thermometric element ЕЧП-0183 43
Platinum sensitive thermometric element ЕЧП 45
Copper sensitive thermometric element EЧM-0183 46
II Thermoelectric Couples of wide spread application 47
TXA-0188, TXK-0188 48
TXA-2088, TXK-2088 49
TXA-2188 50
TXA-2288, ТХК-2288 51
TXA-2388, TXK-2388 52
TXK-2488 53
TXA-2588, ТХК-2588 54
ТХК-2688 55
TXK-2788 56
TXK-2888 57
TXK-3088 58
ТХК-0583 59
TXA-706-02 60
TXA-1007 61
TXA-1072, ТХК-1072 63
TXA-1085 65
TXA-1087, ТХК-1087 66
TXA-1368M1 67
TXA-1387 70
III Thermoelectric Couples for high temperature measuring 72
ТПП-1788, ТПР-1788 73
ТПП-1888, ТПР-1888 74
ТПР-1988 75
TBP-301-01 76
ТПР-0290 77
ТПР-0573 78
TBP-0687 79
TBP-0688 80
TBP-3488 81
ТПП-0788 82
IV Thermocouples of resistance and thermoelectric couples of maritime register 83
ТСП-0989Р, ТСМ-0989P 84
TCM-8040P 85
ТСП-8040Р 86
ТСП-8041Р 87
ТСП-8042Р 88
TCM-8043P 89
ТСП-8043Р, ТСП-8044Р 90
ТСП-8045Р, ТСМ-8045Р 91
TXA-1172P 92
ТХК-1172P 93
V Thermocouples, compensating devices, connection boxes for objects of nuclear energy 94
VI Thermocouples with unified output signal, digital thermometers, regulators, controllers, temperature alarm systems 98
ТНЦ-011 99
ТТ-Ц016, ТТ-Ц016-01 100
ТТЦ-103 102
ТО-Ц022, Т0-Ц022-01 103
ТО-Ц022-3 104
ПВУ-0197 105
ПВ-0013 106
ПВП-0105, ПВП-0205, ПВП-0305 107
ТСПУ/ТСМУ/ТХАУ-0288,ТСПУ/ТСМУ/ТХАУ-0289 109
ТСПУ/ТСМУ/ТХАУ-0198 110
PT-0102 111
PT-0102C (wall mounted), RT-0102 (on the DIN rail) 113
RE-202 114
RE-202-4 115
RE-204 116
PT-0102 Щ2-8 (multichannel) 117
РТ-0102П 118
CT-136M. 119
CTC-0189M 120
СКТР-0597 121
VII Infrared thermometers (Pyrometers) 122
Stationary pyrometers of partial radiation "Smotrich-8" 123
Portable pyrometers of partial radiation "Smotrych-4PM1","Smotrych-5PM1". 125
Portable pyrometers of partial radiation "Smotrych-4PM1-08",
"Smotrych-4PM1-09" 126
Pyrometric transformer with a standardized analogue output of ПП-У 127
VIII Special purpose devices 128
IX Other devices 136
Device for measuring (regulating) humidity and air temperature 137
Thermo hygrometer BT-1 138
Thermo hygrometer BT-1P 139
Thermoregulator for controlling the heat generator on the basis of PT-0102ST 140
Reference thermoelectric couples, type ППЕ 141
Reference thermoelectric couples, type ПРЕ 142
Barrier to spark protection ТФ-3388 143
Electronic sensors for control of wheel pairs passage ДЕ-96 144
Temperature control system "Рось-1-M1" 145
Temperature control system on the basis of PT-0102-8 146
X Protective Cartridges and Connectors 147
Protective cartridge 4.819.015 148
Protective cartridge 4.819.016 149
Movable connector 4.473.002 150
Movable connector 4.473.003 151

SECTION I

THERMOCOUPLE OF RESISTANCE OF WIDE SPREAD APPLICATION

THERMOCOUPLE OF RESISTANCE

ТСП-1088 (ТУ 25-7363.042-90),
TCM-1088 (ТУ 25-7363.032-89)
Designed for measuring temperature of liquid and gaseous medium.
Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$:
for ТСП-1088
for TCM-1088
Designation of NSC
for ТСП-1088
for TCM-1088
Tolerance class
for ТСП-1088
for TCM-1088
Number of sensing elements:
for ТСП-1088
for TCM-1088
Nominal pressure of measured medium Pnom, MPa:
for figure 1, 6
$\begin{array}{ll}\text { for figure } & 3,4 \\ \text { for figure } & 2,5\end{array}$
Material of protection fitting:
for ТСП-1088
for TCM-1088
Material of thermocouple head:
from minus 200 to 500 from minus 50 to 150

10П, 50П, 100П, 500П, Pt50, Pt100, Pt500, Pt1000

50M, 100M
A, B
A, B, C
1 or 2
1

10
6,3
0,4
12X18H10T, X23Ю5 12X18H10T,
press material $\mathrm{A} Г-4 \mathrm{~B}$, propylene

Thermocouples can be completed with
figure 1,6 with Pnom=25 mPa with protective cartridge 5Ц4.819.015
figure 2,5 with Pnom $=0.4 \mathrm{mPa}$ with $5 Ц 4.473 .002$
figure $3,4 \quad$ with Pnom $=50 \mathrm{mPa}$ with protective cartridge 5Ц4.819.016
The length of the assembling part L . of a thermocouple of resistance should be chosen out of the options below:

100, 120, 160, 200,250, 320, 400, 500, 630, 800, 1000, 1250, 1600, 2000, 2500, 3150mm
On the request of the customer the length of the assembling part can be different from the above.

Schematic representation of connections

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

THERMOCOUPLE OF RESISTANCE

ТСП-1187 (ТУ 25-7363.036-90),
TCM-1187 (ТУ 25-7363.036-89)
Designed for measuring temperature of liquid and gaseous medium in explosive hazardous zones, which may contain ammonia, hydronitric mixture, carbon dioxide, natural or converted gas or its components and as well aggressive impurities of hydrogen sulphide (H 2 S), sulphuric anhydride (SO2)

Thermocouple of resistance have the non-explosive level of explosion protection "explosive-proof enclosure" and explosion protection marking "1ExdIICT6".

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$:

for ТСП-1187	(figure1,	$4)$
for ТСП-1187	(figure2,	$5)$
for TCM-1187	(figure 3, 4)	

Designation of NSC:
for TCП-1187
for TCM-1187
Tolerance class
Number of sensing elements:
for TCП-1187
for TCM-1187
for TCП-1187
for TCM-1187
from minus 50 to 200
from minus 200 to 500
from minus 50 to 150

50П, 100П, Pt50, Pt100
50M, 100M, 2000M
B
1 or 2

Nominal pressure of measured medium Pnom, MPa:
for TCП-1187 (figure4,5), TCM-1187 (figure 4) 1
for TCП-1187 (figure2), TCM-1187 (figure 3) 16
for ТСП-1187 (figure1, $d=6,5 \mathrm{~mm}$) 25
for ТСП-1187 (figure1, $d=6 \mathrm{~mm}$) 32

Material of protection fitting:
for ТСП-1187 (figure 1)
for ТСП-1187 (figure 2)
for ТСП-1187 (figure 4, 5)
for TCM-1187 (figure 3, 4)
Material of thermocouple head
steel 12X18H10T, 10X17H13M2T or alloy BT1-0
steel 12X18H10T steel 10X17H13M2T 10X17H13M2T
press material $A \Gamma-4 B$

Thermocouples of resistance of TCП type are made in accordance with the figures 1,2,4,5, Thermocouple of resistance of TCM type - in accordance with the figures 3,4

Length, L, mm:
for ТСП-118
for TCM-1187
I, mm for ТСП-1187 (figure 1)
Diameter, D, mm for ТСП-1187 (figure 1)
Diameter, d, mm for ТСП-1187 (figure 1)
from 80 to 2000
from 120 to 2000
40 or 45
8 or 10
6 or 6,5

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

2 - for figure 1, 3, 4

3 - for figure 1, 3, 4

2 - for figure 2, 5 (double)

THERMOCOUPLE OF RESISTANCE

TCM-1188 (TV 25-7363.032-89)
Designed for measuring temperature of liquid and gaseous medium in blast-furnace surface

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$
Designation of NSC
Tolerance class
Nominal pressure of measured medium Pnom, MPa: for figure 1 for figure 2,3

Material of protection fitting:
Material of thermocouple head
Thermocouples can be completed with
figure 1with Pnom $=0.4 \mathrm{mPa}$ with mobile fitting
figure 2 with Pnom $=25 \mathrm{mPa}$ with protective cartridge 5Ц4.819.015
figure 3 with Pnom $=50 \mathrm{mPa}$ with protective cartridge 5Ц4.819.016
The length of the assembling part L . of a thermocouple of resistance should be chosen out of the options below:

120; 160; 200; 250; 320; 400; 500; 630; 800; 1000; 1250; 1600; 2000; 2500; 3150 mm

Figure 1

THERMOCOUPLE OF RESISTANCE

ТСП-1287 (ТУ 25-7363.028-89)
Designed for measuring temperature of liquid and gaseous medium in chemical and gas industry, in cryogenic engineering.

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$: for figure 1
from minus 220 to 500
for figure 2
for figure 3 for figure 4, 5

Designation of NSC

Tolerance class
Material of protection fitting
Length of the assembling part, L, mm
Material of thermocouple head: for figure 1 for figure 4

Protection grade of outside part from dust and water:
for figure 1, 3, 4 for figure 2 for figure 5
Resistance to mechanical influence
Nominal pressure of measured medium Pnom, MPa:
for the length of assembling part L from 80 to 250 mm
from minus 50 to 200
from minus 220 to 200
from 0 to 500
50П, 100П, Pt50, Pt100
A, B
steel 12X18H10T
from 80 to 500
aluminium alloy steel 12X18H10T

IP54
IP20
IP00
vibration-proof

25

for the length of assembling part L from 320 to 500 mm

The construction of Thermocouple of resistance ТСП-1287 (fig.4) is block-modular and is completed with armatures БАУИ 408721.015, БАУИ 408721.016, БАУИ 408721.019 and БАУИ 408721.020.

ТСП-1287(fig.5) in block-modular Thermocouple of resistance the replaceable thermometric inserts are used.

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Schematic representation of connection

ARMATURE БАУИ.408721.015
Material - steel 12 X 18 H 10 T

L, mm	307	367	4K7

ARMATURE БАУИ.408721.016
Material - steel $12 \times 18 \mathrm{H} 10 \mathrm{~T}$

$l_{c}, \mathrm{~mm}$	Iз	D	S, mm	d
160	305		K 4	
250	395	$\mathrm{G} 1 / \mathrm{K}$		9
400	545		36	11
160	305	G1		
250	395		3	

ARMATURE БАУИ.408721.017

Material - steel 12X18H10T

$I 1$	160	220	280
$I 2$	307	367	427

ARMATURE БАУИ. 408721.019

Material - steel $12 \times 18 \mathrm{H} 10 \mathrm{~T}$

L_{1}	225	285	345
L_{2}	307	367	427

ARMATURE БАУИ. 408721.020
Material - steel $12 \times 18 \mathrm{H} 10 \mathrm{~T}$

$L, \mathrm{~mm}$	517	727	1017	1417	2017

THERMOCOUPLE OF RESISTANCE
ТСП-1288 (ТУ 25-7363.042-90),
TCM-1288 (TУ 25-7363.032-89)
Designed for measuring temperature of liquid and ТСМ-1288,fig.1,4), solid bodies (ТСП-1288,fig.2), air of (ТСП-1288,fig.3).

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$:

for ТСП-1288 (figure 1, $4 ; d=6 \mathrm{~mm}, \sigma=8 \mathrm{~mm}$)	from minus 50 to 250
for ТСП-1288 (figure 2)	from 0 to 300
for TCП-1288 (figure 3)	from minus 50 to 60
for TCM-1288 (figure 1, $4 ; s=6 \mathrm{~mm}, \sigma=8 \mathrm{~mm}$)	from minus 50 to 150

Designation of NSC:
for ТСП-1288
for TCM-1288
gaseous medium (ТСП-1288, freight and isothermal cars

Tolerance class:
for ТСП-1288
50П, 100П, Pt50, Pt100 50M, 100M
for TCM-1288
A, B
B, C
Nominal pressure of measured medium Pnom, MPa:
for $\mathrm{d}=6 \mathrm{~mm}$
for $\mathrm{d}=8 \mathrm{~mm}$
0,4

Material of protection fitting
Material of thermocouple head (figure 1)
press material $A \Gamma-4 B$
The length L, mm :
for TCП-1288, TCM-1288 (figure 1)
for ТСП-1288, ТСМ-1288 (figure 4)
from 143 to 563
for ТСП-1288 (figure 3)
The length I, mm:
for ТСП/ТСМ-1288 (figure 1, 4)
from 620 to 1040 from 530 to 20080
from 80 to 500

Figure 1

Figure 2

Figure 3

Figure 4

for figure 2 (Tolerance class B), for figure 1, 4 (Tolerance class B, C)

for figure1, 4
(Tolerance class A)

for figure 3
(Tolerance class A, B)

THERMOCOUPLE OF RESISTANCE
 ТСМР-1291 (БАУИ. 405212.007 ТУ)

It consists of two same-type thermocouples of resistance (a pair of THERMOCOUPLE OF RESISTANCE), which are designed to measure the temperature difference in water used for the cool tap-holes in blast furnace production.

Operational range of measured temperature differences, ${ }^{\circ} \mathrm{C}$
from 0 to 25
Temperature change rate, ${ }^{\circ} \mathrm{C}$
from 0 to 100
Designation of NSC 500M

Tolerance class
Admissible values of resistance difference of a pair of Thermocouple of resistance in the temperature equivalent for the same temperatures throughout the whole range of temperature change, ${ }^{\circ} \mathrm{C}$, not more

Nominal pressure of measured medium Pnom, MPa
Material of protection fitting
The length $L, m m$

0,25
C
1,6
steel 12X18H10T
from 120 to 500

The production of TCMP-1291 without converter head with outlet cable of the proper length is allowed.

Schematic representation of connections

THERMOCOUPLE OF RESISTANCE
ТСП-1388 (ТУ 25-7363.042-90),
TCM-1388 (ТУ 25-7363.032-89)
Designed for measuring the temperature of small-scale bearings (fig. $1,2,5$) and the surface of sold bodies.

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$

Designation of NSC:
for ТСП-1388
for TCM-1388
Tolerance class:
for ТСП-1388
for TCM-1388
Nominal pressure of measured medium Pnom, MPa:
for figure 1, 2, 3, 4, 5
Material of protection fitting:
for ТСП-1388 і ТСМ-1388 (figure 1, 2)
for ТСП-1388 i ТСМ-1388 (figure 3, 4)
for TCM-1388 (figure5)

Length, mm:

Schematic representation of connections

Figure 1

Figure 2

Figure 3

Figure 5

Figure 4

THERMOCOUPLE OF RESISTANCE ТСП-1588 (ТУ 25-7363.042-90)
Designed for measuring temperature of liquid and gaseous medium.

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$
Designation of NSC
Tolerance class
Material of protection fitting
Material of thermocouple head
Nominal pressure Pnom, MPa
Number of sensing elements

from 0 to 150 100ח, Pt100 B see the Table press material $\mathrm{A} \Gamma$-4B water-proof
1
2

Schematic representation of connection

Designation	$\begin{gathered} \mathrm{L}, \\ \mathrm{~mm} \end{gathered}$	Material of protection fitting	Weight kg	Designation	L, mm	Material of protection fitting	Weight kg
5Ц2.822.037	200	Steel 12X18H10T	0,90	5Ц2.822.037-17	1250	Steel 08X18H125	3,10
-01320			1,09		1600		3,80
	400		1,25		2000		4,70
-035	500		1,46		2500		6,0
-04	800		2,15		3150		7,0
-051	1000		2,54		200	$\begin{gathered} \text { Steel } \\ \text { 10X17H13M2T } \end{gathered}$	0,90
-061	1250		3,10		320		1,09
-07	1600		3,80		400		1,25
-08	2000		4,70				1,46
-09	2500		6,0				2,15
-103	3150		7,0	-27	1000		2,54
-11	200	$\begin{gathered} \text { Steel } \\ 08 \times 18 \mathrm{H} 12 \mathrm{~b} \end{gathered}$	0,90		1250		3,10
-12	320		1,09		1600		3,80
-134	400		1,25		2000		4,70
-14	500		1,46		2500		6,0
	800		2,15		3150		7,0
-16	1000		2,54				

THERMOCOUPLE OF RESISTANCE

ТСПР-0196 (ТУ УЗ.48-04850451-040-97)
Designed for measuring the difference in temperature of heat carriers in open and closed systems of heat supply. It is used as a part of the measuring systems for recording the amount of heat energy used by consumers.

The ТСПР -0196 incorporates two types of Thermocouple of resistance (a pair of THERMOCOUPLE OF RESISTANCE).

Operational range of measured temperature differences, ${ }^{\circ} \mathrm{C}$
Temperature change rate, ${ }^{\circ} \mathrm{C}$
Admissible values of resistance difference of a pair of
Thermocouple of resistance in the temperature equivalent
for the same temperatures throughout the whole
Designation of NSC
Tolerance class
Nominal pressure of measured medium Pnom, MPa
Material of protection fitting
Assembling length L, mm
Cable length I, mm
Thread diameter D, mm
from 0 to 155 from 0 to 160

0,05; 0,1
100П, 500П, 1000П, Pt100, Pt500, Pt1000

B

6,3

12X18H10T
80,100,120,160,200
2000, 4000, 6000
M20x1,5; G1/2 (for figure 1, 2)

Figure 3

Schematic representation of connections

THERMOCOUPLE OF RESISTANCE

ТСП-0287 (ТУ У 33.2-04850451-026:2007)
Designed for measuring the temperature of solid bodies (metal) as well as liquids and gaseous media in means of transport and in industry.

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$ Designation of NSC
Tolerance class:

Material of protection fitting:
figure 1
figure 2, 3, 4, 5
figure1
figure 2, 3
figure 4
figure 5
Nominal pressure of measured medium, MPa :
figure1, 2, 3, 5
figure 4
figure 4,5
from minus 50 to 400 (see the table)
100П, 500П, 1000П
A
B
BT1-0, 12X18H10T
12X18H10T
12 X 18 H 10 T or 10 X 17 H 13 M 2 T aluminium alloy D16T

0,4
32
from 1 to 10 (according to the order)

Figure 3

for figure 4 for figure 4, 5
Schematic representation of

THERMOCOUPLE OF RESISTANCE

TCM-0387 (TY 25-7363.021-88)
Designed for measuring the temperature of windings of turbo and hydro generators and large electric machines.

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$
Designation of NSC
Tolerance class
Weight, kg, not more than
from 0 to 150
50M

C

0,02

Figure 1

The rest see figure 1
Figure 2

The rest see figure 1
Figure 3

Designation	Figure	Scheme of connection	Dimensions, mm		
			1	L	L_{1}
5ц2.822.019	1	2	10	150	100
-0.1			25	65	
-0.2	2	3	10	150	260
-0.3			25	65	
-0.4	3	4	10	150	
-0.5			25	65	

Schematic representation of connections

THERMOCOUPLE OF RESISTANCE TCM-0890

 (ТУ У3.48-04850451-060-1999)Designed to measure the temperature of water, lubricant, steam, air, metal structures, bearings, etc. equipment of nuclear power plants.

It is intended for installation in premises of technological equipment.
The thermocouple of resistance functions with the ambient air from minus 50 to $60{ }^{\circ} \mathrm{C}$ and the relative humidity of 100% at a temperature of $30{ }^{\circ} \mathrm{C}$.

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$
Designation of NSC
Reference resistance value with $0^{\circ} \mathrm{C}$, Ohm
Tolerance class
Temperature coefficient TO $\propto \mathrm{C}-1$
Range of admissible resistance deviation from NSC, ${ }^{\circ} \mathrm{C}$
Nominal pressure, MPa
Figure1
Figure2,5,6
Figure3,4
Resource, hours
Seismic resistance
Fire resistance
Dust and water protection level
Figure 2, 3, 4
Figure 1, 5, 6, 7
Safety class
Overall dimensions are shown in the Figures.
from minus 50 to 150
50M, 100M
$50 \pm 0,06,100 \pm 0,12$

B

0,00428; 0,00426
$\pm(0,3+0,005 \mid t)$

4

0,63

6,3

80000
9 points according to MSK-64
fire-proofed, don't spread fire

IP65
IPOO
3Н по НП 306.2.141

Figure1

Figure 5

Figure 6

Figure 7

Schematic representation of connections

THERMOCOUPLE OF RESISTANCE TOM -0591
(БАУИ. 405212.006 ТУ)
Designed for remote temperature measuring and control of grain, bran and other agricultural products during storage in elevators, granaries and bunkers

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$
from minus 30 to 60
Designation of NSC
50M
Tolerance class
B
Number of sensing elements
6, 12

Assembling part (thermal cable) withstands the bursting effort, kg 3000 Number of zones 6, 12

Thermocouple of resistance can operate with digital thermometer ТО-Ц022.

Designation	Lm	II, m	Lm	$\begin{gathered} \mathrm{d}, \\ \mathrm{~mm} \end{gathered}$		Number of zones	Production
$\begin{gathered} \text { БАУИ } \\ 40522112 / 005 \end{gathered}$	10	1.3	1.7	21	6	6	General
-01	12		2.1				
-02	14	1.8	2.4				
-03	16	2.3	2.7				
-04	18	2.7	3.1				
-05	20	2.9	3.4				
-06	22	3.3	3.7				
-07	24		4.1				
-08	26	3.8	4.4				
-09	28	4.3	4.7		12	12	
-10	18	1.1	1.52				
-11	20	1.3	1.7				
-12	22	1.5	1.85				
-13	28		2.4				
-14	40	2.4	3.4				
-20	10	1.3	1.7				
-21	12		2.1	21	6	6	Tropical
-22	14	1.8	2.4				
-23	16	2.3	2.7				
-24	18	2.7	3.1				
-25	20	2.9	3.4				
-26	22	3.3	3.7				
-27	24		4.1				
-28	26	3.8	4.4				
-29	28	4.3	4.7				
-30	18	1.1	1.52		12	12	
-31	20	1.2	1.7				
-32	22	1.5	1.85				
-33	28		2.4				
-34	40	2.4	3.4				

THERMOCOUPLE OF RESISTANCE WITH IMPULSE OUTPUT SIGNAL TOMI-0591 (БАУИ. 405212.005 ТУ)

Designed to convert the temperature value into a pulse current output signal. Thermal transducer is part of the "РОСЬ-1" temperature control system.

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$
Designation of NSC
Tolerance class
Load resistance, Ohm
Time of running control of the thermocouple, sec
Time to set the operating mode, sec
Number of sensing elements
Assembling part (thermocouple) withstands the action of the bursting force, kg

Number of zones
from minus 30 to 60
50M
B
100
9

2
6, 12
3000
6, 12

THERMOCOUPLE OF RESISTANCE

ТСП-0889 (ТУ 25-7363.076-91)

Designed to measure the temperature of operation zone metal of thermoplastautomats (KuASY, ТСП-0889 type, Figure 3) and on production lines of chemical fiber (ТСП-0889 type, Figure 1,2).

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$: for figure 1, 2 for figure 3

Designation of NSC
Nominal pressure of measured medium Pnom, MPa
Tolerance class
Material of protection fitting
Material of thermocouple head for figure 1
Weight, g
from minus 50 to 350
from minus 50 to 300
100П, Pt100
0,1

B
steel 12 X 18 H 10 T press
material $А Г-4 B$ from 35 to
130

Figure 1

Figure 2

Figure 3

Designation	Figure	$\begin{gathered} \mathrm{d}, \\ \mathrm{~mm} \end{gathered}$	L,m	L_{1}	II_{1}	Material of protection fitting
$\begin{aligned} & \text { БАУИ } \\ & \text { 40522112/005 } \end{aligned}$	1	6	213	160		$\begin{gathered} \text { Steel } \\ 08 \times 13 \end{gathered}$
-01			303	250		
-02			373	320		
-03			453	400		
-04			213	160		
-05			303	250		Steel 12X18H10T
-06			373	320		
-07			453	400		
-08	2	-	340	60	85	$\begin{gathered} \text { Steel } \\ 08 \mathrm{X} 18 \mathrm{H} 10 \mathrm{~T} \end{gathered}$
-09		5	440	150	185	
-10			500	320	345	
-11			785	630	655	
-12		-	340	60	85	
-13		5	440	160	185	
-14			600	320	345	
-15			785	630	655	
-16	3	-	800	40	75	Steel
-17			1000			08X13
-18				65	100	(12X18H9T)

Schematic representation of connections

THERMOCOUPLE OF RESISTANCE
ТСП-0987, ТСМ-0987 (ТУ 25-7363.024-88)

Designed to measure the air temperature in the premises of different purposes.
Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$
Designation of NSC:

$$
\begin{array}{ll}
\text { for TCП-0987 } & \text { 100П, Pt100 } \\
\text { for TCM-0987 } & 50 \mathrm{M}
\end{array}
$$

Tolerance class:
for ТСП-0987
for TCM-0987
Material of protection fitting
from minus 50 to 100

A
B
steel 12X18H10T

For the rest see figure 1
Figure 2
Figure 1

Designation	Resistance Ro with $0^{\circ} \mathrm{C}$, Ohm	Figure	Housing material
5 Ц2.822.024 -01	100	1	Press material
-02	100	2	АГ-4B
-03	50		
-04	100	1	Phenolic plastic -05
-06	100	2	03-010-02
-07	50		

Schematic representation of connection

Designed to measure the air temperature in premises including nuclear power plants.
For the power plants they are installed in premises out of technological service in the zones of severe regimes.

The Thermocouple of resistance are operable at the ambient temperature from minus 50 to $150^{\circ} \mathrm{C}$ and relative air humidity 100% at $35^{\circ} \mathrm{C}$.

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$
Designation of NSC
ТСП-1290
TCM-1290
Reference resistance value with $0^{\circ} \mathrm{C}$, Ohm
ТСП-1290
TCM-1290
Tolerance class
Temperature coefficient TO α C-1
ТСП-1290
TCM-1290
Range of admissible resistance deviation
from NSC, ${ }^{\circ} \mathrm{C}$
Nominal pressure, MPa
Resource, hours
Material of enclosure
for figure 1
for figure 2
Seismic resistance
Fire resistance
Dust and water protection level
Safety class
from minus 50 to 150
50П, 100П, Pt50, Pt100
50M
$50 \pm 0,06 ; 100 \pm 0,12$
$50 \pm 0,06$
B
0,00391; 0,00385 0,00428;
0,00426
$\pm(0,3+0,005|t|)$
0,4
80000
press material $A \Gamma-4 B$
steel 12X18H10T
9 points according to MSK-64
fire-proofed, don't spread fire IP65
3H according to $\mathrm{H} П 306.2 .141$

Figure 1

Schematic representatıon or connections

Schematic representanion or connections

Figure 2

THERMOCOUPLE OF RESISTANCE
TCM-364-01 (TУ 25-0470.0143-85)
Designed to measure the temperature of liquids and gases (water, oil, air) of diesel locomotive.

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$
Designation of NSC from 0 to 150

Tolerance class
Nominal pressure of measured medium Pnom, MPa
Material of protection fitting

50M
B
1,6
steel 12X18H10T

Designation	Dimensions, mm		Weight, g
	L	I	
$5 Ц 2.821 .410$	160	60	115
-01	180	80	120
-02	200	100	125
-03	220	120	130

Schematic representation of connections

Designed for measuring the temperature of air media of test chambers including climatic test chambers.

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$
Designation of NSC
Nominal pressure, MPa
Stability to mechanical impacts
Material of protection fitting
Tolerance class
from minus 200 to 600 (see the table)
100ח, Pt100
0,16
Vibration resistant
steel 08X18H10T
A, B

Figure 1

Figure 2

1 - Movable connector
Figure 3, 4

for figure 1, 3

for figure 2, 4

Schematic representation of connections

Designation	L, mm	Tolerance class	Designation	L, mm	Tolerance class
from minus 100 to $200^{\circ} \mathrm{C}$			from minus 200 to $600^{\circ} \mathrm{C}$		
Figure 1			Figure 3		
5Ц2.821.289	120	A	5Ц2.821.289-08	250	A
-01	120	B	-09	250	B
Figure 2			-10	320	A
5Ц2.821.289-02	120	A	-11	320	B
-03	120	B	-12	400	A
Figure 3			-13	400	B
5Ц2.821.289-04	160	A	-14	630	A
-05	160	B	-15	630	B
-06	200	A	Figure 4		
-07	200	B			
Figure 4					
5Ц2.821.289-16	160	A	5Ц2.821.289-20	250	A
-17	160	B	-21	250	B
-18	200	A	-22	320	A
-19	200	B	-23	320	B
			-24	400	A
			-25	400	B
			-26	630	A
			-27	630	B

SENSITIVE THERMOMETRIC ELEMENT

PLATINUM ЕЧП-0183 (ТУ 25-7558.007-86)

Designed for using as a separate device for measuring temperature of solid granular substances and gaseous media.

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$
Designation of NSC
Tolerance class
Number of sensing elements
Indicator of thermal inertia, sec, not more
Material of sensing element enclosure

see the table

1П, 10п, 50П, 100П, 500п, Pt1, Pt10, Pt50, Pt100, Pt500

A, B, C
1 or 2
see the table
ceramic

Designation	Toler ance class	NSC	Operational range of measured temperatures	Vibration resistance		Indicator of thermal inertia, sec	$\begin{gathered} \mathrm{d}, \\ \mathrm{~mm} \end{gathered}$	L1, mm	L, mm	Scheme of connec tion	Number of sensing element s
				Frequen cy, Hz	Accelerati on $\mathrm{m} / \mathrm{sec}$						
5Ц4.679.069	B		$\begin{gathered} \text { From } 850 \text { to } \\ 1000 \end{gathered}$	From 5 to 80	9.8			28	43	2.4	1
-1	C										
-5	B					2	4.8				
-6	C										
-7	B										
-8	C										
-9	B	100П						127	142		
-10	C										
-11	A	$10 \square$	From minus 200 to 750	From 5 to 120	19.6	1.5	4.2	13	20		
-12	B										
-13	A	50Π						38	45		
-14	B										
-15	A	-						53	60		
-16	B										
-18	A	10Π						18	25		
-19	B										
-20	A									2x2	2
-21	B	100ח						103	110		
-22	A										
-23	B	$10 \square$	From minus	$\begin{aligned} & \text { From } 10 \\ & \text { to } 500 \end{aligned}$	49			13	20		
-24	A		200 to 400								
-25	B	50	$\begin{aligned} & \text { From minus } \\ & 200 \text { to } 450 \end{aligned}$					38	45	2,4	1
-26	A										
-27	B	100ח						53	60		
-28	A										
-30	B	10п						18	25		2
-31	A	$50 \square$						53	60		
-32	B									2x2	
-33	A	100ח									
-34	B							103	110		

Schematic representation of connection

Designation	Toleran ce class	NSC	Operational range of measured temperatures	Vibration resistance						Scheme	Number
				Frequency, Hz	Acceleration $\mathrm{m} / \mathrm{sec}$	thermal inertia, sec	$\begin{gathered} \mathrm{d}, \\ \mathrm{~mm} \end{gathered}$	$\begin{aligned} & \mathrm{L} 1, \\ & \mathrm{~mm} \end{aligned}$	$\begin{gathered} \mathrm{L}, \\ \mathrm{~mm} \end{gathered}$	of connecti on	of sensing elements
5Ц4.679.069 -35	A	$10 \square$	From minus 200 to 600		9,8	1	$\begin{gathered} 2.5 \\ 2.8 \end{gathered}$			2.4	1
-36	B							13	20		
-37	A	50П									
-38	B							38	45		
-39	A	1007						53	60		
-40	B							53	60		
-42		10						18	25	2,2	2
-43	A	$50 \square$									
-44	B							53	60		
-45	A	100 п									
-46	B							103	110		
-50	A	50ח	From minus 50 to400					28	43	2,4	1
-51	B										
-52	C										
-53	A	$100 \Pi$$50 \Pi$						43	58		
-54	B										
-55	C										
-59	A									2x2	2
-60	B			From 5 to 80							
-61	C										
-62	A		From minus 260 to			1,5	4,2	38	50	2.4	1
-63		100п	300					53	65		
-64		5000п	$\begin{aligned} & \text { From minus } 200 \text { to } \\ & 200 \end{aligned}$				5.8	105	125		
-65		300п	From 0 to 200	From 5 to 120	19,6	5			113		
-66	B	100ח	From 0 to 50	From 5 to 80	9.8	8	5	65	120		

THERMAL SENSING ELEMENT

PLATINUM ЕЧП БАУИ. 408712.039
Designed for using as a separate device for measuring temperature of solid granular substances and gaseous media.

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$
Designation of NSC

Tolerance class
Number of sensing elements
Indicator of thermal inertia, sec., not more
Material of sensing element enclosure
Structural design is shown in the table
from minus 50 to 400
46П, 50П,100П, Pt50,Pt100

A, B, C
1 or 2
see the table
ceramic

THERMAL SENSING ELEMENT
COPPER EЧM-0183 (TУ 25-7558.008-86)
Designed for using as a separate device for measuring temperature of solid granular substances and gaseous media

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$
Designation of NSC
Tolerance class
Indicator of thermal inertia, sec., not more
Material of protection fitting

Figure 1

Designation	Figure	$\begin{aligned} & \text { Tolerance } \\ & \text { class } \end{aligned}$	NSC	Operation range of measured temp., ${ }^{\circ} \mathrm{C}$	Indicator of thermal inertia, sec	Scheme of	$\underset{\mathbf{m m}}{\mathbf{d},}$	$\begin{gathered} \mathbf{L} 1, \\ \mathbf{m m} \end{gathered}$	$\begin{gathered} \mathbf{L}, \\ \mathbf{m m} \end{gathered}$
5 L4.679.070-01 -0 -1 -1 -13	1	C	10M	$\begin{aligned} & \text { from } \\ & \text { minus } 50 \text { to } \\ & 150 \end{aligned}$	10	2	5	20	50
		B	50M		12				
		c	S0M		12			5	80
		B	100M		15			80	110
	2	c	10M		20	4	7	32	62
		B	50 M		25			80	110
		c							
		B	100M		30			100	130
	1	c	10M	$\begin{aligned} & \text { from } \\ & \text { minus } 50 \text { to } \\ & 150 \end{aligned}$	10	2	5	20	50
		B	50M		12			50	80
		c							
		B	100M		15			80	110
	2	c	10M		20	4	7	32	62
		B	50M		25			80	110
		c							
		B	100M		30			100	130
	1	c	50M	$\begin{aligned} & \text { from } \\ & \text { minus } 50 \text { to } \\ & 150 \end{aligned}$	9	2	4	25	55
			100M		10			40	70
	2		50M		25	4	5	32	62
			100M		30			50	80
	3		50M	$\begin{aligned} & \text { from } \\ & \text { minus } 50 \text { to } \\ & 100 \end{aligned}$	12	2		55	110

see the table
10M, 50M, 100M,
B, C
9; 10; 12; 15; 20; 25; 30
fluoroplastric film, latten

Figure 3

Schematic representation

 of connection
SECTION II

THERMOELECTRIC COUPLES OF WIDE SPREAD APPLICATION

THERMOELECTRIC COUPLES

TXA-0188, TXK-0188 (TY 25-7363.033-89)
Designed for measuring temperature of clean air, gaseous chemical non-aggressive media with humidity not more than 80%.

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$:
for TXA-0188 (figure 1, 2)
for TXA-0188 (figure 3, 4)
for ТХК-0188 (figure 1, 2, 3, 4)
Literal designation NSC:
for TXA-0188
for TXK-0188
Class:
for TXA-0188
for TXK-0188, TXA-0188 (figure 3.4)
Indicator of thermal inertia, sec., not more
for figure 1, 2
for figure 3,4
Diameter of thermoelectrode cable, mm for figure 1
for figure 2
for figure 3, 4
Material of thermocouple head
for figure 3
from minus 40 to 1000
from minus 40 to 1200
from minus 40 to 600
K
L
1, 2
2
20
10
1,2
3,2
from 0,5 to 1,2
steel 12X18H10T

Figure 1

Figure 2

Figure 3

rigure 4

THERMOELECTRIC COUPLES

TXA-2088, TXK-2088 (TУ 25-7363.041-89)
Designed for measuring temperature of gaseous and liquid chemical non-aggressive and aggressive media not destroying the protective fitting, solid bodies (metal).

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$: for TXA-2088
figure 1-3
figure 4
for TXK-2088
figure 1-3
figure 4
Literal designation of NSC:
for TXA-2088
for TXK-2088
Class
Number of operational thermal pairs
Indicator of thermal inertia, sec., not more : for TXA-2088, ТХК-2088
figure 1,4
figure 2
figure 3 (with insulated working end)
figure 3 (with non-insulated working end)
Nominal pressure of measured media, MPa for TXA-2088, TXK-2088
figure 1
figure 2,3
Material of protection fitting:
for figure $1,2,3$ to $900^{\circ} \mathrm{C}$
for figure 1,2,3,4 to $600^{\circ} \mathrm{C}$
for figure 2 to $400^{\circ} \mathrm{C}$ (spec.)
Material of thermocouplehead
The length $L, m m$:
for figure 1
for figure 2, 3
for figure 4
The length $e, \mathrm{~mm}$, figure Structure of working end:
for figure 1,2,3
for figure 4
from minus 40 to 900
from minus 40 to 600
from minus 40 to 600
from minus 40 to 600
from minus 40 to 400

50
40
20
8

0,4 6,3

20X23H18,08X20H14C2
 12X18H10T
 10X17H13M2T
 press material $A \Gamma-4 B$ or aluminium alloy

from 320 to 2000
from 120 to 2000
from 10 to 320
from100 to 320
insulated,non-insulated non-insulated

Thermoelectric Couples can be completes with protective connectors: $5 Ц 4.6819_{95} 015$ with Pnom=25 MPa, 5Ц4. 5819.016 with Pnom=50 $=9$.

Figure 1

Figure 2

Figure 3

Figure 4

THERMOELECTRIC COUPLES

TXA-2188 (TУ 25-7363.041-89)
Designed for measuring temperature of gaseous and liquid chemical non-aggressive and aggressive media not destroying the protective fitting, solid bodies (metal)

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$: for figure 1-3 for figure 4

Literal designation of NSC
Class
Number of operational thermal pairs
Indicator of thermal inertia, sec., not more : for figure 1,2,4
for figure 3

Nominal pressure of measured media, MPa for figure 1
for figure 2,3

Material of protection fitting:
for figure 1,2,3
for figure 4
Material of thermocouplehead:
Structure of workina end: $\begin{gathered}\text { for figure 1, } 2,3 \\ \text { for }\end{gathered}$
for figure 1, 2, 3
for figure 4
from minus 40 to 900 from 0 to 600

K

1 or 2
1 or 2
40
20

0,4
6,3
steel 08X20H14C2, 20X23H18 steel 12X18H10T
aluminium alloy
insulated
non-insulated
from 320 to 2000
from 120 to 2000
from 250 to 1600
200 or 320

The length $e, \mathrm{~mm}$, figure 4

Thermoelectric Couples can be completed with protective connectors:
$5 Ц 4.819 .015$ with Pnom= $25 \mathrm{MPa}, 5 Ц 4.819 .016$ with Pnom= $=50 \mathrm{MPa}$.

Figure 1

Figure 2

Figure 3

Figure 4

THERMOELECTRIC COUPLES

TXA-2288, TXK-2288 (TУ 25-7363.041-89)
Designed to measure the temperature of gaseous and liquid chemically non-aggressive media.

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$:
for TXA-2288
for ТХК-2288
Designation of NSC
for TXA-2288
for ТХК-2288
Indicator of thermal inertia, sec., not more
Tolerance class
Length L, mm:
for Fig. 1
for Fig. 2.
Design of the working end
Material of protective reinforcement (armature):
for TXA-2288
for ТХК-2288
Material of head
from minus 40 to 900
from minus 40 to 600

K

L
80
2
from 320 to 1000
from 120 to 1000
isolated
steel 20X23H13, 08X20H14C2
steel 12X18H10T
aluminum alloy

Design of the thermocouples is modular and allows changing the sensing element.

THERMOELECTRIC COUPLES

TXA-2388, ТХK-2388 (TУ 25-7363.034-89)
Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$:
for TXA-2388
for TXK-2388

Designation of NSC
for TXA-2388
for TXK-2388
Indicator of thermal inertia, sec., not more
Class
Nominal pressure of the measured medium, MPa

Length L, mm
Design of the working end
Material of protective reinforcement (armature)
for TXA-2388, $1000^{\circ} \mathrm{C}$
for TXA-2388, $600^{\circ} \mathrm{C}$ and ТХК-2388 $600^{\circ} \mathrm{C}$

Material of head
from minus 40 to 1000 (1050)
from minus $\mathbf{4 0}$ to $\mathbf{8 0 0}$ from minus 40 to 600

K
L
180
1 or 2
$\mathbf{0 , 2 5}$ or 4,0
from 200 to 3150
isolated
steel 15X25T, 20X23H18
steel 12X18H10T
aluminum alloy

Fig. 1

Fig. 2

Fig. 3

Fig. 4

THERMOELECTRIC COUPLES TXK-2488 (TY 25-7363.041-89)

Designed to measure the temperature of the bodies and heads of extruding press for the processing of plastic masses, rubber compounds, liquid and gaseous media, solids.

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$
from minus 40 to 400
Designation of NSC
L
Class
2

Indicator of thermal inertia, sec., not more:
with non-insulated working end with insulated working end

5
30

Material of mounting part of the protective reinforcement (armature)
steel 12X18H10T

Fig. 1

Designation	Working end	Designation	Working end	Fig.	$\begin{gathered} \mathrm{L}, \\ \mathrm{~mm} \end{gathered}$	Weight, kg
5Ц2.822.066	non-insulat ed		isolated	1	10	0.17
-01					32	
-02		5Ц2.822.066-18			60	0.18
-03		-19			100	
-04		-20			120	0.19
-05		-21			160	
-06		-22			200	0.20
-07		-23			250	0.21
-08		-24			320	0.22
-09				2	10	0.17
-10					32	
-11		-25			60	0.18
-12		-26			100	
-13		-27			120	0.19
-14		-28			160	
-15		-29			200	0.20
-16		-30			250	0.21
-17		-31			320	0.22

THERMOELECTRIC COUPLES

TXA-2588, TXK-2588 (TY 25-7363.041-89)
Designed to measure the temperature of the body and head of the extruding presses for the processing of plastics and rubber compounds.

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$:
for TXA-2588
for TXK-2588
Designation of NSC
for TXA-2588 for ТХК-2588

Class

Number of working thermocouples
from minus 40 to 800 from minus 40 to 600

K
L
1 or 2

Indicator of thermal inertia, sec., not more
Material of protective reinforcement (armature)
Material of head
aluminum alloy
Fastening of thermocouples at the facility
Movable connector (pos.1) with a collet chuck

Length L, mm
Design of the working end
from 120 to 800
isolated

THERMOELECTRIC COUPLES

TXK-2688 (TУ 25-7363.041-89)

Designed to measure the temperature in the mixing chamber of the rubber mixer.
Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$
from minus 40 to 200
Designation of NSC L
Class
2
Indicator of thermal inertia, sec., not more 8
Nominal pressure, MPa 4
Material of protective reinforcement (armature)
Design of the working end steel 12X18H10T non-insulated

THERMOELECTRIC COUPLES

TXK-2788 (TУ 25-7363.041-89)
Designed to measure the temperature of linked sausage and other food products in steam roasting chambers.

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$ Designation of NSC

Class
Material of protective reinforcement (armature)
Indicator of thermal inertia, sec., not more
Nominal pressure, MPa
from minus 40 to 200
L

2
steel 12X18H10T

Design of working end
non-insulated

Table

Designation	Dimensions, mm		Weight, g
	L	I	
5 L2.822.069	6130	60	65
-01	6150	80	68
-02	6170	100	71

THERMOELECTRIC COUPLES

TXK-2888 (ТУ 25-7363.041-89)

Designed to measure the temperature in the mixing chamber of the rubber mixer.

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$ Designation of NSC

Class
Indicator of thermal inertia, sec., not more
Nominal pressure, MPa
Design of the working end
Material of protective reinforcement (armature)
Material of head
Production of head
Weight, kg
from minus 40 to 600
L
2
8
4
non-insulated
steel 40X
aluminum alloy
waterproof
1.7

THERMOELECTRIC COUPLES

TXK-3088 (TY 25-7363.041-89)
Designed to measure the temperature of the head of spinning machine and the heating iron of hot drawing machine.

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$
Designation of NSC
Class
Indicator of thermal inertia, sec., not more
Design of the working end
Material of protective reinforcement (armature)
Length L, mm

From 1 to 300
L
2
5
non-insulated
copper M3
see table

Designation	L, mm	Weight, g
5 Ц2.822.072	500	35
-01	1000	70

THERMOELECTRIC COUPLES

TXК-0583 (ТУ 25-7558.015-86)

Designed for continuous temperature control of technological processes of sausage production.

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$
from 0 to 200
Designation of NSC
Class
Indicator of thermal inertia, sec., not more
Material of protective reinforcement (armature)
Design of the working end

L
2
3
steel 12X18H10T or 36НХТЮ-A
non-insulated

Designation	Dimensions, mm		Weight, kg
	I	L	
5Ц2.821.933	60	6115	0.10
-01	80	6135	0.10
-02	100	6155	0.11
-03	200	6255	0.11
-04	320	6375	0.11

THERMOELECTRIC COUPLES

TXA-706-02 (TY 25-02.792247-80)
Designed to measure temperature in blast-furnace process of peripheral gasses, blast-furnace masonry.

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$
Designation of NSC
Class
Number of working thermocouples
Indicator of thermal inertia, sec., not more
Nominal pressure of measured medium, MPa
Design of the working end
Material of protective reinforcement (armature) (armature)
Material of head

from minus 50 to 1050

K

2
1 or 2
50

1.6

isolated
steel $20 \times 23 \mathrm{H} 18$, alloy XH78T steel 12X18H10T

Fig. 1

Fig. 2

Fig. 3

Fig. 4

THERMOELECTRIC COUPLES

TXA-1007 (TУ У 33.2-04850451-078:2005)
Designed to measure the temperature of solid, liquid and gaseous media and the hearth

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$
from 0 to 600 (Fig. 1)
from 0 to 1100 (Fig. 2-5) from 0 to 1200 (Fig. 2-5)

Designation of NSC
Class
Length L, mm:

K

1 or 2
from 3550 to 10000 (Fig. 1) from 320 to 3150 (Fig. 2-5)

THERMOELECTRIC COUPLES Fig. 2, 3 can be mounted in the protective reinforcement (armature) (armature) Fig. 6; Fig. 5 - in the protective cartridge - Fig. 7.

1 Thermocouples are made on the basis of a flexible thermocouple cable (with a shell).
2 The design of transducers and connectors, lengths, fastening units and temperature ranges can be replaced in accordance with the operating conditions.

3 To thermoelectric couples in Fig. 2 and Fig. 3 a compensation cable of the desired length can be connected, as well as a connector (plug+socket).

4 Connectors design can be produced under the order. Connectors operating temperature is determined by connector material:
alloy XH78T-1100 ${ }^{\circ} \mathrm{C}$; steel 20X23H18-1050 ${ }^{\circ} \mathrm{C}$.
5 Cable shell is produced from materials: 12X18H10T, alloys Inconel 600 and Inconel 601, and also other materials depending on the application temperature and media.

Fig. 1

Fig. 2

Fig. 3

Fig. 4
Fig. 5

Fig. 6 - Safety Valves

Fig. 7 - Protective Connector

THERMOELECTRIC COUPLES

TXA-1072, TXK-1072
(TУ B 25-04.4112-84)
Designed to measure the water temperature, high purity water, distillate, bidistillate, protective Measuring range, ${ }^{\circ} \mathrm{C}$:
for TXA-1072 Fig.1-4, TXK-1072 Fig. 1-7 from 0 to 400
insulated or non-insulated depending

Nominal pressure of the measured medium, MPa

Length of mounting part, mm
Material of protective reinforcement (armature) (armature)

Material of head
for TXA-1072 Fig.6,7 from 0 to 500
Designation of NSC
for TXA-1072
K
for ТХК-1072
L
Tolerance class:
for TXA-1072
1, 2
for ТХК-1072
2
Indicator of thermal inertia, sec. not more with insulated working end 5
with non-insulated working end

Design of the working end on the design
from 630 to 10600 depending on the design
steel08X18H10T, 12X18H10T
steel 12X18H10T

Schematic Diagram of Connections

for Fig. 1-4
for Fig.6.7

Chromel

Fig. 1

Fi g. 4

Fig. 2

Fig. 6

Fig. 3

Fig. 7

THERMOELECTRIC COUPLES

TXA-1085 (TУ 25-7558.016-86)
Designed to control the temperature of natural gas combustion products, as well as on the units of compressor stations of main gas pipelines at the gas flow rate in front of the protective screen of the working end of the thermoelectric couples up to $70 \mathrm{~m} / \mathrm{sec}$.

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$
from minus 50 to 600
Designation of NSC
Class
Indicator of thermal inertia, sec., not more
0.35

Nominal pressure of the measured medium, MPa
Material of protective reinforcement (armature)
Material of the head (Fig.1)
Production of head
Weight, kg
Length L, mm
Design of the working end

K

2

4
steel 12X18H10T
steel 12X18H10T
waterproof
0.54
from 280 to 420
non-insulated

Fig. 1

Fig. 2

THERMOELECTRIC COUPLES

TXA-1087, TXK-1087 (TУ 25-7363.027-89)
Designed to measure the temperature of the nitrogen-water mixture and gases after combustion of natural gas $\left(\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{CO}, \mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{4}\right)$, gaseous and liquid ammonia, natural gas, convertible gas, monoethanol amine solution with impurities of hydrogen sulfide $\left(\mathrm{H}_{2} \mathrm{~S}\right)$ and sulfur dioxide $\left(\mathrm{SO}_{2}\right)$ (Fig.1.2); turbine oils in the bearing lubrication system in ammonia production (Fig.3); in tanks and pipelines containing media in which the resistant material of the protective reinforcement (armature) at a liquid speed of up to $3 \mathrm{~m} / \mathrm{s}$ of gas is up to $40 \mathrm{~m} / \mathrm{s}$ (Fig.4).

THERMOELECTRIC COUPLES have explosion-proof level of explosion protection "flameproof enclosure" and the explosion protection marking "IExdIICT6".

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$:
for TXA-1087 (Fig. 1, 2)
for TXK-1087 (Fig. 1, 2)
for TXK-1087 (Fig. 3, 4)
Designation of NSC:
for TXA-1087
for ТХК-1087

Class

from 0 to 800
from 0 to 600
From 1 to 300

K

L
2

Indicator of thermal inertia, sec., not more
for TXA-1087, TXK-1087 (Fig. 1, 2)
20
for TXK-1087 (Fig. 3) 8
for TXK-1087 (Fig. 4)
Nominal pressure of the measured medium, MPa
Number of working thermocouples
from 0,4 to 20
1 or 2
Material of protective reinforcement (armature)
for Fig. 1, 2, 4
for Fig. 3
Length L, mm
for TXA-1087
for ТХК-1087
steel 12X18H10T or steel 10X17H13M2T steel 12X18H10T
from 200 to 2000 from 50 to 1600

For cable connection the installation kits for laying in pipes or under the armored cable are used.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

THERMOELECTRIC COUPLES

TXA-1368M1 (ТУ У3.48-04850451-041-1999)
Designed to measure the temperature of high-speed gas flows in gas turbine engines.

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$
Maximum gas flow rate, m / s
Designation of NSC
Class
Tightness to the measured medium
from 0 to 1000
from 0 to 1000
300
K
2
sealed

Degree of protection from dust and water penetration IP00
vibration and vibration resistant (up to vibrations from 10 to 2000 Hz with an
Resistance to mechanical loads acceleration amplitude of $50 \mathrm{~m} / \mathrm{c}^{2}$), shock and impact resistant (up to multiple shocks with a peak acceleration of 150 $\mathrm{m} / \mathbf{s}^{2}$)
Number of sensing elements
for Fig. 1-5
for Fig. 6, 8, 9
for Fig. 7
1
2 - with two working ends
2 - with one working end
Design of the working end
isolated
Material of protective reinforcement (armature)
Overall dimensions
heat-resistant, heat-proof alloys

Index of thermal inertia in the gas flow, ε, s
see Table 1
see Table 2

Fig. 1

Fig. 2 for rest see Fig. 1

Fig. 3
for rest see Fig. 1

Fig. 5
for rest see Fig. 1

Fig. 6
for rest see Fig. 1

Fig. 7 for rest see Fig. 1

Table 1

TC Execution Designation	Figure	Dimensions, mm		Weight, kg no more
		L	1	
БАУИ.405221.027	1	80	69	0.30
-01		120	109	0.31
-02	2	80	69	0.22
-03		120	109	0.23
-04	3	80	69	0.20
-05		120	109	0.21
-06	4	80	69	0.22
-07		120	109	0.23
-08	5	80	69	0.22
-09		120	109	0.23
-10	6	80	69	0.28
-11		120	109	0.29
-12	7	80	69	0.24
-13		120	109	0.25
-14	8	69	63	0.30
-15		82	76	0.31
-16	9	69	63	0.30
-17		82	76	0.31

Internal wiring diagram

Table 2

Indicator of Thermal Inertia, sec., not more		Maximum Gas Flow Rate,
TC (Figures 1-4)	TC (Figures 5-9)	m / s
16.0	25.0	20
9.0	14.0	50
5.0	10.0	100
4.0	6.5	150
3.3	5.5	200
3.0	4.6	250
2.4	3.9	300

THERMOELECTRIC COUPLES

TXA-1387 (TY 25-7363.039-89)
Designed for temperature measurement in gas turbine and steam turbine installations on heat power engineering facilities:

- of combustion products of liquid or gaseous fuels up to $900^{\circ} \mathrm{C}$ in a pulsating flow moving at a speed of up to $170 \mathrm{~m} / \mathrm{s}$ with a pressure of up to 3 MPa ; the rate of temperature change of the measured medium is up to $150^{\circ} \mathrm{C} / \mathrm{min}$ (Fig. 1,2,3);
- of superheated to $585^{\circ} \mathrm{C}$ steam in the flow at a speed of up to $60 \mathrm{~m} / \mathrm{s}$, with a pressure of up to 25.5 MPa (Fig.4).

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$:
for Fig. 1, 2, 3
for Fig. 4
Designation of NSC
Class
Indicator of thermal inertia, sec., not more:
for 'Fig. 1, 2, 3
for Fig. 4
Resistance to mechanical loads
Number of sensing elements
for Fig. 1, 2, 3
for Fig. 4
for Fig. 1, 2, 3
for Fig. 4
Material of head
Design of the working end
Sensing element (Fig. 4)

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Designation	Fig.	L, mm	I, mm	d, mm	d1, mm	Weight, kg
5Ц2.821.962	1	250	160	20	5.3	1.15
-01		320				1.30
-02		400				1.50
-03		500				1.70
-04		630				1.80
-05		800				2.20
-06		320				1.50
-07		500				1.90
-08	2	800	-			2.05
-09	3	320	160	22		1.70
-10		500				1.90
-11		630				2.10
-12		320	400			2.00
-13		500				2.20
-14		630				2.35
-15		500	630			2.50
-16	4	80	250	-	7	1.60
-17		100				1.70
-18		120				1.80
-19		160				2.10
-20		200				2.40

SECTION III

THERMOELECTRIC COUPLES FOR HIGH TEMPERATURE MEASURINGS

THERMOELECTRIC COUPLES ТПП-1788,
 ТПР-1788 (ТУ 25-7363.043-90)

Designed to measure the temperature of oxidized and neutral media.
Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$
for ТПП-1788
from 0 to 1300 from 600 to 1600
Designation of NSC
for ТПП-1788
for ТПР-1788

S

B
Class:
for ТПП-1788
2
for ТПР-1788
2 or 3
Indicator of thermal inertia, sec., not more
80
Nominal pressure of the measured medium Py, MPa
Diameter of thermoelectrodes, d, mm
0.6

0.4 and 0.5

Length L, mm
Material of head

$$
\begin{aligned}
& \text { see table } \\
& \text { aluminum } \\
& \text { alloy }
\end{aligned}
$$

* The ceramic submerged part of length 1 is only calculated for upper values of the measured temperature range, above $1000^{\circ} \mathrm{C}$.

Designation ТПП 1788	L, mm	l,mm	d, mm	D, mm	Material of the submerged reinforcement	Weight, kg
5Ц2.821.041	320	250	8	14	Corundum	0.28
-01	500	400				0.33
-02			15	25		0.76
-03	800					1.41
-04	1000					1.92
-05	1250					2.51
-06	1600					3.38
-07	2000					4.21

Designation ТПП 1788	Class	L, mm	$l, \mathrm{~mm}$	d, mm	D, mm	Material of submerged reinforcement	Weight, kg	Designation ТПП 1788	Class	L, mm	$l, \mathrm{~mm}$	d, mm	D, mm	Material of submerged reinforcement	Weight, kg
5Ц2.822.041-08	2	320	250	8	14	Corundum	0.27	5L2.822.041-32-33-34-35-36-37-38-39-40-41-42-43-44-45-46-47	2	320	250	8	14	Beryllium oxide	0.27
-09			400				0.32				400				0.32
-10		500		15	25		0.74			500		$15 \quad 25$			0.74
-11		800					1.39			800				1.39	
-12		1000					1.87			1000				1.87	
-13		1250					2.46			1250				2.46	
-14		1600					3.33			1600				3.33	
-15		2000					4.16			2000				4.16	
-16	3	320	250	8	14		0.27		3	320	250	8	14		0.27
-17			400				0.32				400				0.32
-18		500		15	25		0.74			500		15	25		0.74
-19		800					1.39			800					1.39
-20		1000					1.87			1000					1.87
-21		1250					2.46			1200					2.46
-22		1600					3.33			1600					3.33
-23		2000					4.16			2000					4.16

Designed to measure air temperature, inert gases and other non-corrosive media.
Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$:

for ТПП-1888 for ТПР-1888	from 0 to 1300
for ТПП-1888	from 600 to 1600
f	S

Class:
for ТПР-1888
for ТПП-1888
for ТПР-1888
Indicator of thermal inertia, sec., not more
Diameter of thermoelectrodes, d, mm

B
from 0 to 1300
from 600 to 1600

B

2
2 or 3

5
0.4 and 0.5

Delivery of $d=0,4 \mathrm{~mm}$ and length L according to the order is possible.

Designation ТПП-1888	L, mm	$\begin{gathered} \hline \mathrm{L}, \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{d}, \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \text { Designation } \\ \text { ТПР-1888 Class } 2 \end{gathered}$	$\begin{gathered} \text { Designation } \\ \text { ТПР-1888 Class } 3 \end{gathered}$	L, mm	$\begin{gathered} \mathrm{I}, \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{d}, \\ \mathrm{~mm} \end{gathered}$
5Ц2.821.042	320	20	0.5					
-01	400			5Ц2.822.042-31	5Ц2.822.042-62	320	20	0.5
-02	500			-32	-63	400		
-03	630			-33	-64	500		
-04	800			-34	-65	630		
-05	1000			-35	-66	800		
-06	1250			-36	-67	1000		
-07	1600	50		-37	-68	1250	50	
-08	2000			-38	-69	1600		
-09	2500			-39	-70	2000		
-10	3150			-40	-71	2500		
-11	4000			-41	-72	3150		
-12	4500			-42	-73	4000		
-13	5000			-43	-74	4500		
-14	5600			-44	-75	5000		
-14	5600			-45	-76	5600		
-15	6300			-46	-77	6300		
-16	7100			-47	-78	7100		
-17	8000			-48	-79	8000		
-18	9000			-49	-80	9000		
-19	10000			-50	-81	10000		
-20	320	20	0.3	-51	-82	320	20	0.3
-21	400			-52	-83	400		
-22	500			-53	-84	500		
-23	630			-54	-85	630		
-24	800			-55	-86	800		
-25	1000			-56	-87	1000		
-26	1250	50		-57	-88	1250	50	
-27	1600			-58	-89	1600		
-28	2000			-59	-90	2000		
-29	2500			-60	-91	2500		
-30	3150			-61	-92	3150		

THERMOELECTRIC COUPLES
 ТПР-1988 (ТУ 25-7363.043-90)

Designed to measure the temperature of hydrogen, carbon monoxide, water steam, higher hydrocarbons.

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$
Designation of NSC
from 600 to 1600

Class
B
Class
2 or 3
Indicator of thermal inertia, sec., not more
Material of the submerged part of the protective reinforcement (armature) (1)
Material of head

50
corundum
aluminum alloy

Designation	Class	Dimensions, mm		Designation	Class	Dimensions, mm	
		L	e			L	e
5Ц2.822.044	2	630	320	5Ц2.822.044-05	3	630	320
-01		800	400	-06		800	400
-02		1000	400	-07		1000	400
-03		1250	630	-08		1250	630
-04		1600	1000	-09		1600	1000

THERMOELECTRIC COUPLES

TBP-301-01 (TУ 25.02.7921.46-79)
Designed for repeated short-term measurement of slag purified molten iron temperature in the casting ladles of foundries by THERMOELECTRIC COUPLES חTBP-2 packages immersion into the measured medium.

Packages of type ПTВР-2 are products of one-time short-term use and are supplied as a standalone product.

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$
Designation of NSC
Class
Duration of package ПTBP-2 stay in the hot melt (time of one measurement), s

Number of measurements per package when immersed in purified cast iron

Number of measurements by one thermoelectric couple subject to package replacement, times, no more

Indicator of thermal inertia, sec., not more
Weight, kg, no more:
thermoelectric couple, package
from 1200 to 1550
A-1, A-2, A-3

2 or 3

5

10

1500

2
1.0
0.05

THERMOELECTRIC COUPLES TПP-0290 (TУ У 33.2-04850451-088:2007)
Designed to measure the temperature of liquid steel by short-term (5 s) immersion of thermoelectric couple ПТПР-0290 package in the measured medium, with its following change. Packages of type ПТПР-0290 are products of single use and can be delivered as an independent product according to ТУ У 33.2-04850451-089:2007.

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$
from 1000 to 1800
Designation of NSC
B
Class
2 or 3
Indicator of thermal inertia, sec., not more
Duration of package ПТПР-0290 stay in molten steel (time of one measurement), no more, s

After measuring the package should be replaced.
On customer demand packages ПTПР-0290 delivery is allowed (Fig. 3) with connector length of the range: 100; 200; 250; 300; 500; $600 ; 900 ; 1000 ; 1200 \mathrm{~mm}$.

1-body, 2 - replaceable package
Fig. 1 - TПР-0290

Designation	Implementation	L, mm	e, mm
БАУИ.405223.001	ТПР-0290	1600	250
-01	ТПР-0290-01	2000	500
-02	ТПР-0290-02	2500	
-03	ТПР-0290-03	3150	1000
-04	ТПР-0290-04	4000	
-05	ТПР-0290-05	4500	1200

Fig. 2 - Package П ТПР-0290

Fig. 3

Designation	Implementation	Fig.	e, mm
БАУИ.408713.009	ПТПР-0290	2	60
-01	ПТПР-0290-01	3	250
-02	ПТПР-0290-02		500
-03	ПТПР-0290-03		1000
-04	ПТПР-0290-04		1200

THERMOELECTRIC COUPLES
 ТПР-0573 (ТУ 25-02.792059-77)

Designed to measure the temperature of hot blast furnaces.
Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$
from 600 to 1350
Designation of NSC

B

Class
2 or 3
Indicator of thermal inertia, sec., not more
180

Material of the submerged part of protective reinforcement (armature)
self-bonded silicon carbide (SSC) or other similar material

Material of head
steel 12X18H10T
Production of head
waterproof

* small-step thread for fixing the protective cover, used for transportation and storage of the product.

Fig. 1

1-mobile sealing fastening unit; the rest see Fig. 1.

Fig. 2

Designation	Fig.	L, mm	Weight, kg
5 L2.821.694		1250	4.0
-01		1600	4.5
-02		2000	5.0
-03		2500	5.5
-04		1250	4.0
-05	2	1600	4.5
-06		2000	5.0
-07		2500	5.5

THERMOELECTRIC COUPLES

TBP-0687 (TV 25-7363.031-89)
Designed to measure the temperature in high temperature furnaces with tungsten or molybdenum heaters in argon or vacuum.

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$
for different versions
Designation of NSC
Class
Indicator of thermal inertia, sec., not more
Material of protective reinforcement (armature)
see table
see table
2 or 3
30
molybdenum

Designation	I, mm	L, mm	Operating temperature range, ${ }^{\circ} \mathrm{C}$	NSC
5Ц2.821.964	250	400	0... 2000	A-1
-01	320			
-02		500		
-03	250	400	0... 1800	A-2 or A-3
-04	320			
-05		500		

THERMOELECTRIC COUPLES

TBP-0688 (ТУ 25-7363.054-90)

Designed to measure the temperature of slag-free cast iron on various units of cast iron production by short-term (5 s) immersion in the measured medium, followed by the replacement of THERMOELECTRIC COUPLES packages ПTBP-0688, which are products of single use or, depending on the conditions of use, re-single short-term use.

The package can be supplied as a standalone product according to TY 25.7363.055-90.

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$
Designation of NSC
Class
Indicator of thermal inertia, sec., not more
Weight, kg, no more:
thermoelectric couple, 1.5
package,
from 1200 to 1800
A-1, A-2, A-3
2 or 3
2
0.2

Designed for measuring temperature in high temperature furnaces in a neutral environment, in dry hydrogen medium, in vacuum up to $0,13310^{-3}-\mathrm{T}-0,13310^{-4} \mathrm{KPa}$.

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$

Nominal value of application temperature, ${ }^{\circ} \mathrm{C}$
Designation of NSC
Tolerance class
Indicator of thermal inertia, sec., not more
Material of submersible part of the protective reinforcement (armature)
from 0 to 2000 (A-1)
from 0 to 1800 (A-2)
1750
A-1; A-2
2
30
BeO (beryllium oxide) Fig. 1, 2 Mo (molybdenum) Fig. 3

Fig. 1

Fig. 2

Fig. 3

THERMOELECTRIC COUPLES
 ТПП-0788 (ТУ 25-7363.056-90)

Designed to measure the temperature of the molten metal by short-term (5 s) immersion of thermoelectric couple package ПТПП-0788 in the measured medium, with its following replacement.

Packages of type ПТПП-0788 are the products of single use and can be supplied as a standalone product according to TY 25-7363.057-90.

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$:
Designation of NSC
Class
Indicator of thermal inertia, sec., not more

see table

S
2
2

After measuring the package should be replaced.
At consumer request the supplying of thermocouples ТПП-0788 with a body length of $1000 \ldots 1400 \mathrm{~mm}$, packages ПТПП-0788 with a connector length within $200 \ldots 1200 \mathrm{~mm}$ is allowed.

Fig. 1 - ТПП-0788
1-Body; 2 - Replaceable Package

Designation	Dimensions, mm		Range of measured temperatures, ${ }^{\circ} \mathrm{C}$
	L	1	
ТПП-0788	1600	250	ТПП-0788-01
2500	500	$900 \ldots 1400$	
ТПП-0788-02	3150		
ТПП-0788-03	1600	250	
ТПП-0788-04	2500	500	

Fig. 2 - Package ПТПР-0788

Fig. 3

Designation	Implementation	Fig.	L, mm	Weight, g	Range of Measured Temperatures, ${ }^{\circ} \mathrm{C}$
5Ц5.182.885	ПТПП-0788	2	60	25	1300.1700
5Ц5.182.885-01	ПТПП-0788-01	3	200.250	100	
5Ц5.182.885-02	ПТПП-0788-02		450.600	200	
5Ц5.182.885-03	ПТПП-0788-03		900.1200	400	
5Ц5.182.885-04	ПТПП-0788-04	2	80	25	900.1400
5Ц5.182.885-05	ПТПП-0788-05	3	200.250	100	
5Ц5.182.885-06	ПТПП-0788-06		450.600	200	

SECTION IV

THERMOCOUPLES OF RESISTANCE AND THERMOELECTRIC COUPLES OF MARITIME REGISTER

THERMOCOUPLE OF RESISTANCE

ТСП-0989Р, ТСМ-0989Р (ТУ У 33.2-04850451-070-2003)
Designed to measure gas temperature, polymer glycerin paste, gaseous oxygen, hydrogen, nitrogen, carbon dioxide, carbon monoxide, hydrocarbon, antimony hydrogen, sulphuric acid mist.

Thermocouples are explosion-proof level of explosion protection, type of protection "flameproof enclosure", the explosion protection marking1EdIICT6, the sign "x" and high degree of mechanical strength.

Used on ships with unlimited navigation area.
Range of measured temperatures, ${ }^{\circ} \mathrm{C}$:
for ТСП-0989Р for TCM-0989P

Designation of NSC:
for ТСП-0989Р
for TCM-0989P
from minus 200 to 400 from minus 50 to 150

50П, 100ח, Pt50, Pt100 50M

Tolerance class:
for ТСП-0989Р
for TCM-0989P
B
C
Nominal pressure of the measured medium Py, MPa
Material of protective reinforcement (armature)
Material of thermocouple head
Degree of protection from dust and water penetration
Length L, mm:

> for TCП-0989P
> for TCM-0989P

16
steel 12X18H10T
pressmaterial $A \Gamma$-4B
IP65
from 60 to 1600
from 60 to 500

THERMOCOUPLE OF RESISTANCE

TCM-8040P (ТУ У 33.2-04850451-069-2003)
Designed to measure the temperature of fresh water, steam, air, boiler water, oil, oxygen, hydrogen, sulphuric acid mist, carbon dioxide, sea water, distillate, bidistillate, freon, halocarbon, and the like.

Used on ships with unlimited navigation area.

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$
Designation of NSC
Tolerance class
Material of protective reinforcement (armature)
Material of thermocouple head
Degree of protection from dust and water penetration
from minus 50 to 150
50M
C
steel 08X18H10T
steel 12X18H10T
IP65

Designation	Fig.	L, mm	1, mm	D, mm	Weight, kg
5Ц2.822.170	8	60	60	6.5	0.38
-01		80			0.40
-02		100			0.42
-03		120			0.41
-04		160			0.43
-05		200			0.44
-06		250			0.46
-07		320			0.48
-08		400			0.57
-09		500			0.62
-10	2	60	100		0.35
-11		80			0.40
-12		100			0.42
-13		120			0.42
-14		160			0.43
-15		200			0.44
-16		250			0.46
-17		320			0.48
-18		400			0.57
-19		500			0.62
-20	3	60	60	7.5	0.38
-21		80			0.40
-22			320		0.51
-23		100	60		0.43
-24		120			0.43
-25		160			0.44
-26		200			0.45
-27		250			0.47
-28		80			0.37
-29		100			0.39
-30		120			0.41
-31		160			0.46
-32		200			0.51
-33		250			0.58

Fig. 1

The rest - see Fig. 1
Fig. 4

The rest - see Fig. 1
Fig. 2

Schematic Diagram of Connections

THERMOCOUPLE OF RESISTANCE

ТСП-8040Р (ТУ У 33.2-04850451-069-2003)
Designed to measure the temperature of air, fresh and sea water, boiler water, condensate, fuel, steam, gas, oxygen, hydrogen, nitrogen, carbon dioxide, hydrocarbon, hydrogen tube, sulfuric acid mist, electrolyte, aqueous solution of carbonate and bicarbonate, special alloy, distillate, bidistillate and the like.

Used on ships with unlimited navigation area.
Range of measured temperatures, ${ }^{\circ} \mathrm{C}$: for Fig. 1, 3, 4
for Fig. 2.
for Fig. 5
Designation of NSC
Tolerance class
Material of thermocouple head

Material of protective reinforcement (armature)

Degree of protection from dust and water penetration
for Fig. 1, 2, 3, 4
for Fig. 5
Diameter d, mm
Length of mounting part, mm
Cable length (Fig. 5), mm

Fig. 1

The rest - see Fig. 1
Fig. 2

The rest - see Fig. 1
Fig. 3
from minus 200 to 500
from minus 50 to 400
from minus 50 to 200
$2 \times 50 \Pi .50 \Pi, 100 \Pi$, $2 \times \mathrm{Pt} 50, \mathrm{Pt50}$,
Ptl00, гр.21, 2xгр. 21

B

steel 12X18H10T
stainless steel 08X18H10T, alloy 3 M , ПТ-7M, bronze БрАЖНМц 9-4-4-1

IP65

IP00
6,5; 7.5 for bronze
from 50 to 3550
from 1000 to 10000

The rest - see Fig. 1
Fig. 4

Fig. 5

Schematic Diagram of Connections

THERMOCOUPLE OF RESISTANCE

ТСП-8041Р (ТУ У 33.2-04850451-069-2003)
Designed to measure the temperature of air, fresh and sea water, boiler water, distillate, bidistillate, analyte, lubricants, fuel, steam, condensate, gas, electrolyte (aqueous alkali solution), oxygen, carbon dioxide with vapors "МЗЗДА", aqueous solution of carbonate, hydrogen, electrolysis 15% aqueous solution "МЗЗДА", etc.

Used on ships with unlimited navigation area.

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$
Designation of NSC
Tolerance class
Material of thermocouple head
Material of protective reinforcement (armature)

Degree of protection from dust and water penetration
Length of mounting part, mm
from minus 50 to 300
50П, Pt50, гр. 21
B
steel 12X18H10T
stainless steel $08 \times 18 \mathrm{H} 10 \mathrm{~T}$, alloy 3M, ПT-7M
IP65
from 32 to 1000

Schematic Diagram of Connections

THERMOCOUPLE OF RESISTANCE

ТСП-8042P (ТУ У 33.2-04850451-069-2003)

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$
Designation of NSC
Tolerance class
Nominal pressure of the measured medium, MPa:
for Fig. 1
for Fig. 2.
Material of thermocouple head
Material of protective reinforcement (armature)
Degree of protection from dust and water penetration
Length of mounting part, mm
from minus 50 to 400
50П, 100П Pt50, Pt100
A, B

25
0.40
stainless steel 12X18H10T
stainless steel 08X18H10T
IP65
from 500 to 2526

Schematic Diagram of Connections

Designed to measure the temperature of bearings and oil in them. Used on ships with unlimited navigation area.

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$
Designation of NSC
Tolerance class
Nominal pressure of the measured medium, MPa
Material of protective reinforcement (armature)
Material of head
Degree of protection from dust and water penetration
Length of mounting part, mm
from minus 50 to 100
50M
C
0.63
steel 12X18H10T
steel 12X18H10T
IP65
from 20 to 500

Schematic Diagram of Connections

THERMOCOUPLE OF RESISTANCE

ТСП-8043Р, ТСП-8044Р (ТУ У 33.2-04850451-069-2003)
Designed to measure the temperature of bearings and oil in them, as well as the walls of pipelines.

Used on ships with unlimited navigation area.
Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$:
for ТСП-8043P (Fig. 1)
for ТСП-8044P (Fig. 2)
Designation of NSC
for ТСП-8043Р
for ТСП-8044Р
Tolerance class:
for ТСП-8043Р
for ТСП-8044Р
Nominal pressure of the measured medium, MPa:
for ТСП-8043Р
for ТСП-8044Р
Material of thermocouple head
Material of protective reinforcement (armature)
for ТСП-8043Р
for ТСП-8044Р
Degree of protection from dust and water penetration
Length of mounting part, mm
for ТСП-8043P
for ТСП- 8044P

Fig. 1

Fig. 2
from minus 50 to 120
from minus 50 to 400
50П, 100П Pt50, Pt100, гр. 21
50П, Pt50, гр. 21
C
B
0.63
0.40
stainless steel 12X18H10T
stainless steel 12X18H10T
stainless steel 08X18H10T IP65
from 20 to 1250 from 80 to 200

Schematic Diagram of ТСп-8043P Connection

Schematic Diagram of ТСП-8044P Connections

Designed to measure the temperature of air, oils vapor and sea water. Used on ships with unlimited navigation area.

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$
Designation:

> for TCП-8045P for TCM-8045P

Tolerance class:

> for ТСП-8045P
> for TCM-8045P

Material of protective reinforcement (armature)
Material of thermocouple head
Degree of protection from dust and water penetration
from minus 50 to 75

50П, 100П, Pt50, Pt100, гр. 21 50M

B, C
 C

steel 12X18H10T pressmaterial A -4B

IP65

Schematic Diagram of
Connection

THERMOELECTRIC COUPLES

TXA-1172P (ТУ У 33.2-04850451-071-2003)
Designed to measure the temperature of water, steam and exhaust gases. Used on ships with unlimited navigation area.

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$:
for Fig. 1, 3, 7
for Fig. 2, 4, 5, 8
for Fig. 6
Designation of NSC
Class
Indicator of thermal inertia, sec., not more:
for Fig. 1-4, 7, 8
for Fig. 5
for Fig. 6
Material of thermocouple head
for Fig. 1, 2, 7, 8
for Fig. 3, 4, 5, 6
Material of protective reinforcement (armature)
from 0 to 600
from 0 to 800
from minus 40 to 600
K
1 or 2
60
5
2
pressmaterial $\mathrm{A} \Gamma$-4B
stainless steel 12X18H10T
12X18H10T, 10X17H13M2T, stainless steel

Degree of protection from dust and water penetration IP65
Length L, mm
from 80 to 400
Nominal pressure of the measured medium, MPa:

$$
\text { for Fig. 1, 3, } 7
$$

for Fig. 2, 4, 8
2.5
for Fig. 5
for Fig. 6

Fig. 1

Fig. 5

Fig. 2

Fig. 6

Fig. 3

Fig. 7

Fig. 4

10.0
0.25

32

Fig. 8

THERMOELECTRIC COUPLES

TXK-1172P (ТУ У 33.2-04850451-071-2003)
Designed to measure the temperature of gas, water, steam, exhaust gases.. Used on ships with unlimited navigation area. Range of measured temperature, ${ }^{\circ} \mathrm{C}$:
for Fig. 1-4, 7, 8
for Fig. 6
Designation of NSC
Class
Index of thermal inertia, c, no more than:
for Fig. 1-4, 7, 8
for Fig. 6
Nominal pressure of the measured medium, MPa:
for Fig.1, 3, 7
for Fig. 2, 4, 8
for Fig. 6
Material of thermocouple head
for Fig. 1, 2, 7, 8
for Fig. 3, 4, 5, 6
Material of protective reinforcement (armature)

Degree of protection from dust and water penetration
Length L, mm

Fig. 2

Fig. 7

from 0 to 600
from minus 40 to 500
L
2

60
2

2.5

10
32
pressmaterial $\mathrm{A}-4 \mathrm{~B}$
stainless steel
12X18H10T
12X18H10T, stainless steel

IP65
from 80 to 400

Fig. 1

Fig. 6

Fig. 4

Fig. 3

Fig. 8

SECTION V

THERMOCOUPLES, COMPENSATING DEVICES, JUNCTION BOXES FOR NUCLEAR POWER FACILITIES

Dear users !

Scientific and Manufacturing Association "Thermoprylad" named after V. Lakh since 1956 has been developing, manufacturing and supplying to nuclear power facilities (NPF) the technical means of temperature measurement - THERMOELECTRIC COUPLES, THERMOCOUPLE OF RESISTANCE and compensation devices. SMA "Thermoprylad" was the main enterprise of former USSR Ministry of Instrument-Making on technical means of temperature control for nuclear power.

In 1997-1999 SMA "Thermoprylad" named after V. Lakh has carried out the modernization of devices for nuclear power and currently supplies only modernized devices, including individual technical requirements of nuclear power plants.

Thermocouples for nuclear power have passed state acceptance tests for measuring equipment included in the state register of measuring equipment, included in the state register of measuring equipment of Ukraine and the Russian Federation, are periodically subject to state control tests with the issuance of Certificates of Conformity of the approved type by the State Standard of Ukraine.

Mechanical, climatic and metrological tests of thermocouples, compensating devices, checking integrity of the protective reinforcement (armature) is carried out by the laboratories of SMA "Thermoprylad" named after V. Lakh, accredited by the State standard of Ukraine.

The quality of products for nuclear power is ensured by:

- performing of input control of materials and semi-finished products;
- compliance with the requirements of regulatory, design and technological documentation;
- performing of climatic, mechanical and metrological tests according to the requirements of technical specifications;
- special technical reception of products which is carried out by the Conformity Assessment Body "SERTATOM";
- organization of quality assurance system according to ISO 9001.

Delivery of technical means of temperature control is carried out
on nuclear power plants in Ukraine, Russia, Czech Republic, Slovakia and Bulgaria, India, China.

This section presents only the main technical characteristics of devices for NPF. Additional information can be found in the special catalogue of devices for NPF.

TYPES AND TECHNICAL CHARACTERISTICS OF THERMOCOUPLES OF RESISTANCE, THERMOELECTRIC COUPLES AND COMPENSATION DEVICES FOR NPF

Device Type and TY	Purpose and Technical Characteristics
THERMOCOUPLE OF RESISTANCE ТСП-1390, ТСП-1790 ТУ У3.48-04850451-051-1999	Measure the temperature of the coolant, steam, water, boric acid, concrete, metal structures, grease, decontamination solution, metal
THERMOCOUPLE OF RESISTANCE ТСП-0690 ТУ У3.48-04850451-054-1999	Measure the temperature of water, oil, air, metal structures, bearings; equipment of nuclear power plants. Designed for installation in the premises of technological equipment
THERMOCOUPLE OF RESISTANCE TCП 1290, TCM-1290 ТУ У3.48-04850451-059-1999	Measure the air temperature in room, premises of nuclear power plants. Installed in the technological premises of controlled access area, which are not serviced
THERMOCOUPLE OF RESISTANCE TCM-0890 ТУ У3.48-04850451-060-1999	Measure the temperature of water, oil, air, metal structures, bearings, equipment of nuclear power plants. Designed for installation in the premises of technological equipment
THERMOELECTRIC COUPLES TXA-1590, TXK-1590, TXA-1690, ТХК-1690 ТУ У3.48-04850451-050-1999	Measure the coolant temperature. Designed for operation in "dry" and "wet" channels of the reactor. Individual versions can operate in conditions of loss-of-coolant accidents LOCA and severe accident
THERMOELECTRIC COUPLES TXA-1090,TXK-1090, ТУ У3.48-04850451-055-1999	Measure the temperature of water, oil, air, metal structures, bearings, equipment of nuclear power plants. Designed for installation in controlled access area that are not technologically serviced
Multi-channel compensation devices УКМ3-УКМ8 ТУ У 33.2-04850451-065-2003	Designed for connection (from one to twelve) of THERMOELECTRIC COUPLES TXA/TXK-1590 and automatic compensation of temperature changes of free ends of these THERMOELECTRIC COUPLES. Consist of power supply unit and compensation box K-577
$\begin{aligned} & \text { Compensation devices УК-82, } \\ & \text { УT-0186 } \\ & \text { TУ y 33.2-04850451-067-2003 } \end{aligned}$	Designed to connect of free ends of seven THERMOELECTRIC COUPLES TXA/TXK-1590, equalizing the temperature of the free ends and issuing information about this temperature
Junction boxes KC-513M1, КС-535, КС-545 ТУ У 33.2-04850451-066-2003	KC-513M1 are designed to connect the free ends of eighteen THERMOELECTRIC COUPLES TXA-1590. KC-535 are designed to connect the free ends of twenty-six THERMOELECTRIC COUPLES TXA/TXK-1590. KC-545 are designed to connect the free ends of eight THERMOELECTRIC COUPLES TXA-1590. All junction boxes are designed to equalize the temperature of the free ends of THERMOELECTRIC COUPLES and provide information about their temperature

Device Type and TY	Purpose and Technical Characteristics
Rack БАУИ. 301421.002	Designated to fix of working ends of THERMOELECTRIC COUPLES TXA-1590 (Fig. 5) and for sealing the TC channels in places of THERMOELECTRIC COUPLES exit from them
$\begin{aligned} & \text { Junction boxes KC-567-01 } \\ & \text { КС-567-02 ТУ } \\ & 25-02.792120-80 \end{aligned}$	Designed for connection of electric wires of electric motors CEP in thermal area of nuclear power plants
Thermoelectric level indicators TIP-1509 БАУИ(Тр.1.0039.1809) ТЗ	Designed to create a signal (indication) about the appearance of the vapor phase in the coolant of water-water power reactors of type BBEP, which is a prerequisite for determining the reduction of the coolant level in the reactor.
Measuring converter ПВ-21 AC ТУ У 26.5-04850451-90:2015	Designed for: - measurement and signal conversion of the primary transmitters, namely, THERMOELECTRIC COUPLES, transducers with unified output signal of direct current and voltage into a unified DC signals; - indication of the current value of the measured value in physical units; - multi-position control of the measured value; - supply external measuring converters with unified signal and other devices from the built-in power supply; - transmission of measurement results via RS-485 interface MODBUS Protocol.
Harnesses for reactors of type BBEP (thermal control (TC) harnesses, energy release (ER) harnesses ТУ у 33.2-04850451-091:2012	TC harnesses are designed to transmit signals from the sensors of temperature control of the coolant, ER harnesses are designed to transmit signals from the sensors of energy measurement in nuclear instrumentation systems and can be used for the manufacture of communication lines in internal reactor control systems or in coolant level control systems

SECTION VI

THERMOCOUPLES WITH UNIFIED OUTPUT SIGNAL, DIGITAL THERMOMETERS, CONTROLLERS, TEMPERATURE ALARMS, SYSTEMS

DIGITAL THERMOMETERS THЦ-011

Designed to measure temperature or other physical values previously converted into an electrical signal. Work in complete with thermocouples with NSC K, L, S, R, 50M, 100M, 50ח, 100Π, Pt50, Pt 100, or signals in the range 0-1 V, 0-5mA, 4-20 mA, 0-20 mA.

Range of measured temperature(display range), ${ }^{\circ} \mathrm{C}$:	
50M, 100M	from minus 50 to 200
50П, 100П, Pt50, Pt100	from minus 200 to 600
K	from minus 50 to 1200
L	from minus 50 to 800
S, R	from 0 to 180
0-1V, $0-5 \mathrm{~mA}, 4-20 \mathrm{~mA}, 0-20 \mathrm{~mA}$	from minus 199.9 to 1999
Number of display digits	3; 5
Supply voltage, V	220
Power consumption, VA	3
Weight, kg, no more	0.15
Overall dimensions, mm	$80 \times 40 \times 95$
Window size for mounting on the panel, mm	34,5x75,5

DIGITAL THERMOELECTRIC THERMOMETERS
ТТ-Ц016, ТТ-Ц016-01 (ТУ УЗ.48.04850451-057-98)
Designed for rapid temperature measurement of metal surfaces, as well as non-corrosive liquid, gaseous and viscous substances.

Thermometers consist of a digital measuring device and a set of THERMOELECTRIC COUPLES.

Included in the State register of measuring equipment at number 1196-05.
Technical characteristics of digital measuring device

Characteristics	TT-L016	TT-L016-01
Range of measuring, ${ }^{\circ} \mathrm{C}$	minus 10-1200	minus 60-199.9
Minimum grade value	1.0	0.1
Absolute error, ${ }^{\circ} \mathrm{C}$	± 3	$\pm 0,5$
Weight, g	200	
Overall dimensions, mm	170x75x37	
Supply voltage, V	9 (battery of type "Krona")	
Ambient temperature during operation, ${ }^{\circ} \mathrm{C}$ at customer request	-10-50 minus 20-50	

Additional Functions

- Memorizing of measured value max and min .
- Battery discharge indication
- Automatic poewr disable in 2-3 min
- Ability to remember the measured values and its manually review with an indication on the device display (according to the order)
- Possible changes os technical specifications (range, NSC, deviation, etc.), as well competing the other designs with the converters

Thermocouples	Measured Medium	Range, ${ }^{\circ} \mathrm{C}$	${ }^{*} 988^{\circ} \mathrm{C}$
Fig. 1 - T911-01	Viscous substances	minus 0-200	3
Fig. 2 - T911-03	Liquid, loose, viscous substances	minus 60-600	5
Fig. 3 - T911-04	Liquid, bulk substances	minus 0-800	10
Fig. 4 - T912	Flat, smooth, metal surfaces	50-500	10
Fig. 5 - T919	Gaseous medium	minus 60-500	40
Fig. 6 - T921	Flat, smooth, metal surfaces	20-200	3
Fig. 7 - T922	Rotating surfaces	0-250	10
	Semi-solid, rubber-technical substances	0-200	10
Fig. 9 - T930	Multilayer relief materials	0-180	3
	For connection of stationary thermocouples with NSC K	minus 60-1200	-

Nomenclature and quantity of thermocouples is defined by the customer
Thermometer error, no more, ${ }^{\circ} \mathrm{C}$

```
for ТТ-Ц\016
for ТТ-Ц016-01
\pm4 at t < 300 }\mp@subsup{}{}{\circ}\mathrm{ ;;
\pm[4+0,01(t - 300)] at t > 300}\mp@subsup{}{}{\circ}\textrm{C}
\pm2,5
```


MICROPROCESSOR THERMOELECTRIC THERMOMETER

ТТЦ-103 (ТУ 25.5Ц2.828.018-89)

Designed to measure the temperature of molten metal. Consists of a digital measuring device and a package of THERMOELECTRIC COUPLES of type ПTBP, mounted in a special holder-handle of type "rod".

Measurement process consists in ПTBP package immersing into the molten metal and counting the values on the digital display after the end of the measurement process.

After the end of the measurement process, sound and light signals are given, and the measured temperature value (up to 32 values) is automatically stored in the memory and can be read.

Operational range of controlled temperatures, ${ }^{\circ} \mathrm{C}$	from 0 to 1800
Limit permissible value of the basic error, \%, no more	
	1
Minimum grade value, ${ }^{\circ} \mathrm{C}$	1
Ambient temperature, ${ }^{\circ} \mathrm{C}$	from 5 to 60
Supply voltage, V	3.6
Power consumption, W, no more	0.012
Overall dimensions, mm:	
measuring device	125x70x25
thermal converter body	1200x400

MICROPROCESSOR THERMOELECTRICAL THERMOMETER TO-L022, ТО-Ц022-01

Designed for stationary and operational temperature measurement of grain, bran, flour and other agricultural products. Can be used in other sectors of the economy. Thermometer consists of a digital measuring device and resistance thermal transducers.

The package includes a battery of type "Krona".
Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$:

$$
\begin{array}{ll}
\text { for ТО-Ц022 } & \text { from minus } 20 \text { to } 100 \\
\text { for ТО-Ц022-01 } & \text { from minus } 50 \text { to } 150
\end{array}
$$

Least significant digit value
of device (OMP), ${ }^{\circ} \mathrm{C}$:

> for ТО-Ц022
> for ТО-Ц022-01

Limit permissible value of the basic error, ${ }^{\circ} \mathrm{C}$:
ТО-Ц022 with:
thermocouples of tolerance class B
thermocouples of tolerance class C
ТО-Ц022-01 with:
thermocouples of tolerance class B
thermocouples of tolerance class C
Supply
Weight, kg:
of digital device
of thermocouples TO-010, TO-010-01, TO-011
Overall dimensions of the digital device, mm

0.1

1.0
$\pm(1,0+0,004 / \mathrm{t} /) \pm 01$ OMP
$\mathbf{\pm}(1,2+0,007 / t / \mathbf{t} \mathbf{0 1}$ OMP

$\pm 2 \pm 1$ OMP

$\pm 3 \pm 1$ OMP autonomous

0.2

from 0.15 to 0.22
$170 \times 75 \times 37$
Nomenclature and quantity of thermocouples is defined by the customer Other versions are possible.

RESISTANCE THERMOMETER DIGITAL TO-L022-3

Designed for operative simultaneous measurement at three points the grain, granular and viscous substances temperature.

Measuring range
Basic absolute error
Supply
Device design
Device is calibrated according to NSC Pt1000.
Certificate of metrological certification is provided.

from minus $30^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$
 $\pm 0.5^{\circ} \mathrm{C}$
 battery of type „Krona"
 portable

On the front panel of the device there are buttons for switching the measurement zones of the 3-zone TO-010-3M (nominal static characteristic (hereinafter - NSC) Pt 1000) and power on/off button.

Fig. 1 External View of TOL-022-3 with thermoelectric couple TO-010-3M
Thermoelectric couple TO-010-3M is made in the form of a probe with head and handle. Inside the metal fittings there are three sensing elements NSC Pt 1000 in the places indicated in Fig. 2- "1st zone", "2nd zone", "3rd zone". Connect with digital device TO-010-3M with flexible cable.

Fig. 2 thermoelectric couple of 3 Zones TO-010-3M *
*Design changes are possible upon customer request.

MEASURING CONVERTERS WITH UNIFIED OUTPUT SIGNAL OF TYPE ПВУ-0197

(TУ У 33.2-04850451-072:2006)
Designed to convert signals from THERMOCOUPLE OF RESISTANCE, THERMOELECTRIC COUPLES or DC and DC voltage sources into unified DC output signal in the range from 4 to 20 mA (possibly from 0 to 5 mA). Included in the State register of measuring equipment at number $У$ 22.72-06.

Supply voltage
(for designs 2 and 4 also
Load resistance, kOhm
Ambient temperature, ${ }^{\circ} \mathrm{C}$
(for converters without galvanic connection
\square

Designation of NSC	Type of Input Signal	Basic Conversion Range		Minimum Conversion Ranae	Limit Permissible Basic Reduced Error, \%
ПВУ-0197/50 М, ПВУ-0197/100 М	50M,100M	minus $50^{\circ} \mathrm{C}$;	$150^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$	+0,
ПВУ-0197/50 П, ПВУ-0197/10 0 П	50П,100П	minus $200^{\circ} \mathrm{C}$;	$600^{\circ} \mathrm{C}$	100	$\pm 0,25$
ПВУ-0197/К	K	minus $50^{\circ} \mathrm{C}$;	$1200{ }^{\circ} \mathrm{C}$	$200{ }^{\circ} \mathrm{C}$	$\pm 0,4$
ПВУ-0197/L	L	minus $50^{\circ} \mathrm{C}$;	$800^{\circ} \mathrm{C}$		
ПВУ-0197/S	S	$0^{\circ} \mathrm{C}$	$1300{ }^{\circ} \mathrm{C}$		
ПВУ-0197/В	B	$300{ }^{\circ} \mathrm{C}$	$1600{ }^{\circ} \mathrm{C}$		
ПВУ-0197/А-1	A-1	$0^{\circ} \mathrm{C}$	$2000{ }^{\circ} \mathrm{C}$		
ПВУ-0197/Ј	J	minus $100^{\circ} \mathrm{C}$;	$700^{\circ} \mathrm{C}$		
ПВУ-0197/Т	T	minus $200^{\circ} \mathrm{C}$;	$300{ }^{\circ} \mathrm{C}$		
ПВУ-0197/0,005А	$\begin{aligned} & \text { DIRECT } \\ & \text { Current } \end{aligned}$	0 mA	5 mA	-	$\pm 0,15$
ПВУ-0197/0,02А		0 mA	20 mA		
ПВУ-0197/0,016А		4 mA	20 mA		
ПВУ-0197/0,01 В	voltage of permanent current	0 mV	10 mV	-	$\pm 0,4$
ПВУ-0197/0,1 В		mV	100 mV		$\pm 0,25$
ПВУ-0197/1 В		0 V	1 V		$\pm 0,15$
ПВУ-0197/5 В		0 V	5 V		
ПВУ-0197/10 В		0 V	5 V		

Note - At customer request, the conversion range may be less than the minimum, while the limit of permissible basic reduced error is increased.
Converters have four design versions.
from 12 to 36 V (DC))
from 220 V (AC)
up to $\mathbf{1 , 2}$
from minus 40 to 60
from minus 20 to 60)
a - standard design b - vibration resistant design Fig. 1 Modular Converters

a - L=35mm
b $-\mathrm{L}=70 \mathrm{~mm}$
Fig. 2 - DIN Rail Mounted Converters

Converters with constant voltage supply can work complete with regulator RT-0102 internal power supply.

Converters mounting in the head of the thermal converter

Fig. 4 - Sealed Converters

Designed to convert signals from primary thermocouples into a unified output signal in the range of 4-20 mA, 0-5mA.

Mounted in the head of thermocouples.

Supply voltage, V

Limit permissible value of the basic error, \%: for THERMOCOUPLE OF RESISTANCE for thermocouples

> Temperature dependence of the output current: for THERMOCOUPLE OF RESISTANCE for thermocouples

Load resistance, kOhm : with signal output 4-20 mA with signal output 0-5 mA

Ambient temperature, ${ }^{\circ} \mathrm{C}$
from 12 to $\mathbf{3 6}$
from 0.1 to 0.25
from 0.5 to 1

linear

nonlinear
from minus 40 to 80
diameter 40x9
from 1.2 to 3

Designation of NSC	Range of Temperatures, ${ }^{\circ} \mathrm{C}$
50M, 100M	$\begin{aligned} & \text { minus } 50-50 \\ & \text { minus } 25-25 \\ & 0-50 \\ & 0-100 \\ & 0-150 \\ & 0-200 \end{aligned}$
50П, 100П	$\begin{aligned} & \text { minus } 50-50 \\ & \text { minus } 25-25 \\ & 0-50 \\ & 0-100 \\ & 0-200 \\ & 0-400 \end{aligned}$
K	$\begin{aligned} & 0-200 \\ & 0-400 \\ & 0-600 \\ & 0-800 \end{aligned}$

MEASURING CONVERTERS PROGRAMMABLE ПВП-0105, ПВП-0205, ПВП-0305

Converters measuring programmable ПВП-0105, ПВП-0205, ПВП-0305 include a 16-bit analog-to-digital converter and microcontroller for digital signal processing. Inputs and outputs are galvanically separated. Converters can be installed on a standard DIN rail, electrical connections are made by means of screw clamps. Measurement converters can be programmed in user conditions through a SETUP - program. The following parameters are available for programming:

- sensor type (thermistor, thermocouple, voltage)
- input signal range (${ }^{\circ} \mathrm{C}, \mathrm{mV}$);
- sensor connection diagram (two -, three -, four-wire for thermistors);
- sensor connection line resistance (for two-wire connection);
- compensation of free ends (inner or outer 50M or Pt100 for thermocouples);
- digital filter time constant from 0 ... 100 s ;
- current of measurement range beginning within the range;
- current of measurement range end within the range;
- current error is within the range;
- type of output signal (4-20 mA or 20-4mA).

Programming of input parameters of the consumer. Input for THERMOCOUPLE OF RESISTANCE 50ח, 100ח, Pt100, Pt1000, 50M 100M Input for THERMOELECTRIC COUPLES K, L, S, J, B. mV
Compensation of free ends of thermal converter - internal or external (50M or Pt 100 only for ПВП-0105).
Output 4-20 mA, two-wire connection scheme (ПВП-0105)
$0-5 \mathrm{~mA}, 0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}$ three-wire wiring diagram (ПВП-0205)
0-10 V three-wire connection scheme (ПВП-0305)
Supply voltage
12-36 V
Linearization of primary thermocouples characteristics
Galvanic separation between input and output circuits

Nominal (Letter) Designation of NSC, Input Signal	Measuring Range	Limit of Basic Reduced Error, $\%$
$50 \mathrm{M}, 100 \mathrm{M}, \mathrm{TCM} \mathrm{гр.23}$	from minus 50 to $200^{\circ} \mathrm{C}$	0.25
$50 п, 100 \Pi$, Pt100, Pt1000	from minus 200 to $800^{\circ} \mathrm{C}$	0.25
TXA(K)	from minus 200 to $1300^{\circ} \mathrm{C}$	0.5
TXK(I_)	from minus 200 to $800^{\circ} \mathrm{C}$	0.5
TЖK(Д	from minus 200 to $1100^{\circ} \mathrm{C}$	0.5
$\operatorname{Tnn(S)}$	from 0 to $1700^{\circ} \mathrm{C}$	0.5
TПP(B)	from 300 to 1800	
Voltage from minus $200-1000 \mathrm{mV}$	from 0 to 100%	0.5

Current through Thermocouples of resistance (TO), mA
Resistance of connecting conductors
Influence of connecting conductors resistance change
Additional error from free ends compensation
Minimum grade value, ${ }^{\circ} \mathrm{C}$
Minimum input sygnal sub-range
Time constant of the digital filter, s
about 0.5
less than 25 Ohm / wire
less than $0.01 \% / \mathrm{Ohm}$
$0.5^{\circ} \mathrm{C} / 10^{\circ} \mathrm{C}$
0.1
$20^{\circ} \mathrm{C}(5 \mathrm{mV}$ for type of
input - mV)
0-100

Output signal:
for ПВП-0105
for ПВП-0205
for ПВП-0305
Output resolution, bit
Minimum output signal sub-range
4-20 mA (2-pov.)
0/4-5/20 mA
0...2/10 V

12
2 mA (2 V)
Additional error from supply voltage changes
from 12 to 36 V , \%, no more
0.1

Additional error from load voltage changes
from 0 to $1 \mathrm{kOhm}, \%$, no more
Galvanic insulation
Input - output, V
Input-connector for SETAP cable
Operating conditions
Ambient temperature, ${ }^{\circ} \mathrm{C}$
Relative humidity of the environment at $25^{\circ} \mathrm{C}, \%$, no more

0.1

1500
absent
from minus 10 to 60

98

Fig. 1 - ПВП-01

Fig. 2 - ПВП-0105

Fig. 3 - ПВП-0205, ПВП-0305

THERMOCOUPLES WITH UNIFIED OUTPUT SIGNAL OF TYPE
 ТСПУ /ТСМУ/ТХАУ-0288, ТСПУ /ТСМУ /ТХАУ-0289

Designed to temperature measurement by temperature converting into unified DC output signal of 4-20 mA or 0-5 mA.

Consist of primary thermal converter in the reinforcement (armature), with mounted measuring transducer ПВУ-0197 in head, which can be supplied as a separate product.

Versions explosion-proof (IExdIICT6 X) and conventional.

Supply voltage, V	12-36
Load resistance, kOhm	
with output signal 4-20mA	UP TO 1,2
with output signal 0-5mA	up to 3
Limit permissible value of the basic error, \%	0,5-1,0
Ambient temperature, ${ }^{\circ} \mathrm{C}$	from minus 40 to 70

Type of thermoelectric couples	Nominal (Letter) Designation of NSC	Range of Measured Temperatures, ${ }^{\circ} \mathrm{C}$	Error, \%
$\begin{aligned} & \text { ТСПУ-0289 } \\ & \text { ТСПУ-0288 } \end{aligned}$	$\begin{gathered} 50 \Pi \\ 100 \Pi \end{gathered}$	from minus 50 to 50 from minus 25 to 25 from 0 to 50 from 0 to 100 from 0 to 200 from 0 to 400 for order	0,50; 0,25
$\begin{aligned} & \text { ТСМУ-0289 } \\ & \text { ТСМУ-0288 } \end{aligned}$	$\begin{gathered} 50 \mathrm{M} \\ 100 \mathrm{M} \end{gathered}$	from minus 50 to 50 from minus 25 to 25 from 0 to 50 from 0 to 100 from 0 to 150	0,50; 0,25
$\begin{aligned} & \text { ТХАУ-0289 } \\ & \text { ТХАУ-0288 } \end{aligned}$	XA	from 0 to 400 from 0 to 600 from 0 to 800 on order	1.00

Fig. 1 -
Converter ПВУ-0197

Fig. 2
Thermal Converter
TXXY-0289

Fig. 1 -
Thermal Converter
TXXY-0288

THERMOCOUPLES WITH UNIFIED OUTPUT SIGNAL OF TYPE
 ТСМУ-0198, ТСПУ- 0198, ТХАУ- 0198

Designed to convert the temperature into unified DC output signal of $4-20 \mathrm{~mA}$ or $0-5 \mathrm{~mA}$.

Supply voltage, V
Load resistance, kOhm
with output signal 4-20mA
with output signal $0-5 \mathrm{~mA}$
Ambient temperature, ${ }^{\circ} \mathrm{C}$
from 12 to 36
to 1.2
to 5
from minus 40 to 60 (70)
\(\left.$$
\begin{array}{|c|c|c|c|}\hline \begin{array}{c}\text { Type of Thermal } \\
\text { Converter }\end{array} & \begin{array}{c}\text { Nominal or Letter } \\
\text { Designation of NSC }\end{array} & \begin{array}{c}\text { Range of Converted } \\
\text { Temperatures, }{ }^{\circ} \mathrm{C}\end{array} & \begin{array}{c}\text { Limits of Permissible Basic } \\
\text { Reduced Error, } \%\end{array} \\
\hline \text { TCחy } & \begin{array}{c}50 \Pi, \\
100 \Pi\end{array}
$$ \& \begin{array}{c}from minus 50 to 50

from minus 50 to 100

from 0 to 100

from 0 to 200

from 0 to 400

from 0 to 600

for order\end{array} \& or others on order\end{array}\right]\)| $\pm 0,5$ |
| :---: |
| TCMY |

Converter ПВУ-0197 is built in the head of thermocouples, which can be supplied as a separate product.

Fig. 1- ПВУ-0197

Thermocouples can be powered from power supplies БЖ-24, БЖ-24-2, БЖ-18 or internal power supply regulator PT-0102.

Fig. 3 - Option without Fitting

Fig. 2 - Option with Fitting
L = 80-2000mm

Designed for automatic control, indication, signaling and archiving of temperature, pressure and other physical values converted into a unified signal in various technological processes.

Included in the State register of measuring equipment at number У2454-07.
Provide: - two-position, three-position or proportional-integral-differential (PID) regulation, dampers control, regulation using a timer;

- high-precision measurement and control;
- software regulation of the technological process, which can be approximated by piecewise linear dependence (to 100 pieces for one program or to 50 pieces for each program of 4-programmes option) for PT-0102Щ2-1-...-П;
- communication with a personal computer (PC) via RS232 or RS485 interface and archiving of nonvolatile memory up to 10000 measured values with a specified period from 1 to 250 min . for PT-0102Щ2-...-K;
- visualization program displays both measured and archived values;
- 24 V power supply for thermocouples with unified output signal (single channel option only);
- when using the spark protection barrier work with converters located in an explosive zone.

Number of input channels: 1, 2 or 8
Work in the complete with: - THERMOCOUPLE OF RESISTANCE TO: 50M; 100M; 50П; 100П; Pt100;
Pt500; Pt 1000; гр..21, 23, NTC and oth., (range from minus $50(200)$ to $600^{\circ} \mathrm{C}$)

- THERMOELECTRIC COUPLES ПT: ХА(К); XK(L); ПП(S,R);
$П Р(\mathrm{~B})$; ЖК(Д; (Т); $\mathrm{BP}(\mathrm{A}-1)$, (range from minus 50 to $2000^{\circ} \mathrm{C}$);
- measuring converters VP of various physical values with unified output signal:
$0-5 \mathrm{~mA} ; 4-20 \mathrm{~mA} ; 0-20 \mathrm{~mA} ; 0-0.1 \mathrm{~V} ; 0$-1V;
$0-10 \mathrm{~V} ; 0-1 \mathrm{kHz} ; 0-10 \mathrm{kHz}$, optical pyrometers (for example, TEPA-50)
Absolute measurement error : 0.1... $1^{\circ} \mathrm{C}$ PT-0102 TO;
1...3T for PT-0102 חT;

0,25 \% for PT-0102 ВП;
$0.05^{\circ} \mathrm{C}(0.05 \%)$ for high-precision regulators.
Number of outputs:
1, 2, 3 or up to 10 for 8 -channel
Outputs:
electromagnetic relay PE (for switching 1 A (up to 8 A) at 220 V);

- Triac-output photocoupler OC (for switching up to 1 amp at $600(800) \mathrm{V}$);
- three phase triac-output photocoupler;
- transistor key TK (for switching 50 (150) mA at 50 (300)V DC);
- analog output: 0(4)...20mA - AB20; 0...5mA - AB5

Supply: $\quad 220$ (9..24)AC or $12 . .36 \mathrm{~V}$ DC
Front panel protection degree IP 54
Overall dimensions, mm:

- in body $\mathrm{M}_{1}-80 \times 40 \times 107$ (1 - and 2 - channel)
- in body $\boldsymbol{\mu}^{2}-72 \times 72 \times 121$ (1-, 2- and 8 - channel)

Warning! Possible changes of technical characteristics (range, NSC, error, etc.), complete with thermocouples of various designs.

For 8 -channel version are provided switching unit (for connecting thermocouples) and block output unit (relay or triac-output photocoupler) mounted on DIN-rail

Selection of Regulator-Meter PT-0102

Л-table; БК — for other devices competing

CONTROLLER (REGULATORS) OF TYPE PT-0102

(ТУ Y33.2-04850451-068:2007)
PT-0102C (Wall Variant), PT-0102DIN (on DIN-Rail)
Designed for automatic control, indication, signaling of temperature, pressure and other physical values converted into a unified signal in various technological processes.

Included in the State register of measuring equipment at number У2454-07. Provide: - two-position, three-position or proportional-integral-differential (PID) regulation, regulation using a timer;

- high-precision measurement and control;
- when using the spark protection barrier work with thermocouples located in an explosive zone.

Number of input channels: 1
Work in the complete with: - THERMOCOUPLE OF RESISTANCE TO:50M; 100M; 50П; 100П; Pt100; Pt500; Pt1000;
гр..21, 23, NTC and oth., (range from minus 50 (200) to $600^{\circ} \mathrm{C}$)

- THERMOELECTRIC COUPLES ПT: XA(К); XК(I_); ПП(S,R); ПР(В); ЖК(Д; МК(Т); $\mathrm{BP}(\mathrm{A}-1)$, (range from minus 50 to $2000^{\circ} \mathrm{C}$);
- measuring converters VP of various physical values with unified output signal: $0-5 \mathrm{~mA} ; 4-20 \mathrm{~mA} ; 0-20 \mathrm{~mA} ; 0-0.1 \mathrm{~V} ; 0-1 \mathrm{~V} ; 0-10 \mathrm{~V} ; 0-1 \mathrm{kHz} ; 0-10 \mathrm{kHz}$, optical pyrometers (for example, TEPA-50)
Absolute measurement error : 0.1... ${ }^{\circ} \mathrm{C}$ PT-0102 TO;
1... $3^{\circ} \mathrm{C}$ for PT-0102 ПT; 0,25 \% for РТ-0102 ВП; $0.05^{\circ} \mathrm{C}(0.05 \%)$ for high-precision regulators.
Number of outputs: 1, 2
Outputs: - electromagnetic relay PE (for switching of 1 A (up to 8A) at 220V);
- Triac-output photocoupler OC (for switching up to 1 amp at 600 (800) V);
- three phase triac-output photocoupler (remote unit);
- transistor key TK (for switching 50 (150) mA at 50 (300)V DC);
- analog output: 0(4)...20mA - AB20; 0...5mA - AB5 (remote unit)

Supply:
220 (9..24)AC or 12..36V DC (24V

- with special order)

IP65 for wall-mounted version
Degree of protection
$90 \times 74 \times 43$ or $118 \times 78 \times 55$
PT-0102C
$90 \times 70 \times 65$
Warning! Possible changes of technical characteristics (range, NSC, error, etc.), complete with thermocouples.

TWO-CHANNEL MICROPROCESSOR TEMPERATURE CONTROLLERS

RE-202 (ТУ У3.48-04850451-028-96)
Designed for automatic control of temperature or other physical quantities, pre-converted into an electrical signal: voltage 0-1 V or current 0-5 mA; 4-20 mA; 0-20 mA. Communication with computer - RS485 (RS232). Work in complete with thermocouples of type TXA (K), TXK (L), TПП (S, R), TCM (50M, 100M), TCП (Pt50, Pt100)

Range of controlled temperatures, respectively, to NSC ${ }^{\circ} \mathrm{C}$:
50M, 100M
50П, 100П
K
L
S
0-1V, 0-5mA, 4-20mA, 0-20mA

Law of regulation

Load control

Two regulation output (relay or triac-output photocoupler)
Switching on the load at the moment of transition through "zero"
Over-temperature alarm
Resolution of temperature setting, ${ }^{\circ} \mathrm{C}$
Range of proportionality coefficient change, ${ }^{\circ} \mathrm{C}$
Range of integration time constant changes, s
Range of differentiation time constant changes, s
from minus 50 to 200
from minus 200 to 600
from minus 180 to 1300
from minus 180 to 800
from 0 to 1800
from minus 199,9 to 999,9

PID -
proportional-integral-differ ential, two-or three-position
pulse-width (for PID - reg.)
Relay - 7A, 240 VAC
Triac-output photocoupler $0.1 \mathrm{~A}, 240 \mathrm{~V}$
Relay - 7A, 240 VAC
0.1

0-200
1-3600
0-1000

FOUR-CHANNEL MICROPROCESSOR
 TEMPERATURE REGULATOR RE-202-4 (ТУ У3.48-04850451-028-96)

Designed for automatic temperature control or other physical quantities previously converted into an electrical signal: voltage 0-1 V or current 0-5mA, 4-20 mA, 0-20 mA. Communication with computer - RS485 (RS232). Work in complete with thermocouples of type (with NSC) TXA (K), TXK (L), ТПП (S, R), TCM (50M, 100M), TCП (Pt50, Pt100).

Range of controlled temperatures, respectively, for NSC ${ }^{\circ} \mathrm{C}$:

50M, 100M
50п, 100п
K
L
S
0-1V, 0-5mA, 4-20mA, 0-20mA
Law of regulation
Load control

Four regulation output (relay or triac-output photocoupler)

Switching on the load at the moment of transition through "zero"

Regulator supply
Weight, kg, no more
Overall dimensions, mm
Window size for mounting on the panel, mm
from minus 50 to 200
from minus 200 to 600
from minus 180 to 1300
from minus 180 to 800
from 0 to 1800
from minus 199,9 to 999,9
three-level
pulse-width

Relay - 7A, 240 VAC

Triac-output photocoupler 0.1 A, 240V

90-260 V, 50 Hz
0.25
$96 \times 48 \times 110$
91x43

MICROPROCESSOR TEMPERATURE CONTROLLERS RE-204

(ТУ У3.48-04850451-028-56)

Designed for automatic temperature control or other physical quantities previously converted into an electrical signal: voltage 0-1 V or current 0-5 mA, 4-20 mA, 0-20 mA. Communication with computer - RS485 (RS232). Work in complete with thermocouples of type TXA (K), TXK (L), ТПП (S, R), TCM (50M, 100M), TCП (Pt50, Pt100)

Range of controlled temperatures, respectively, to NSC ${ }^{\circ} \mathrm{C}$:
$50 \mathrm{M}, 100 \mathrm{M}$
$50 \Pi, 100 \Pi$
K
L
S
$0-1 \mathrm{~V}, 0-5 \mathrm{~mA}, 4-20 \mathrm{~mA}, 0-20 \mathrm{~mA}$

Law of regulation

Load control
from minus 50 to 200
from minus 200 to 600
from minus 180 to 1300
from minus 180 to 800
from 0 to 1800
from minus 199,9 to 999,9
PID -
proportional-integral-differenti al, two-or three-position
pulse-width (for PID-reg.)

Relay - 7A, 240 VAC
Triac-output photocoupler
$0.1 \mathrm{~A}, 240 \mathrm{~V}$
0-5 mA or 4-20 mA

Relay-7 A, 240 VAC
0.1

0-200

1-3600

Adjustable parameter acceleration rate, ${ }^{\circ} \mathrm{C} / \mathrm{hour}$.

TEMPERATURE CONTROLLER (REGULATORS) OF TYPE PT-0102 Щ2-8 (multi-channel)

(ТУ У 33.2-04850451-068-2003)
Designed for automatic and continuous signaling of temperature or other physical value reach the set level (independent level setting for each channel), as well as indication of the current measurement value in the controlled channels. The device can operate in the mode of two-position or PID regulation. To carry out the regulation for each channel separately, it is necessary to additionally order a block of channel outputs. Output options - "dry" relay contacts for a short, or triac-output photocoupler or triac-output transistors (open collectors).

The device works in complete with primary temperature converters: THERMOCOUPLE OF RESISTANCE with nominal static characteristics of conversion (NSC) 50M, 100M, 50ï, 100П, Pt100, etc., or THERMOELECTRIC COUPLES with NSC K, L, J, etc., or with primary converters of other physical quantities with output signal $4-20 \mathrm{~mA}, 0-20 \mathrm{~mA}, 0-5 \mathrm{~mA}, 0-1 \mathrm{~V}, 0-5 \mathrm{~V}, 0-10 \mathrm{~V}$, and the like. Converter connection is carried out through the switching unit (EKTO - for THERMOCOUPLE OF RESISTANCE, БКПT - for THERMOELECTRIC COUPLES, БКВП - for measuring converters with unified output signal), which is included in the package.

The device provides communication with a personal computer (PC) via RS232 or RS485 interface. Communication is carried out by a three-wire line, galvanically isolated from the input circuits and power supply circuits of the device. In addition, the device provides the possibility of measured data archives formation with its subsequent output to PC. Devices are easily integrated into a computer network.

Number of input channels Range of measured temperatures, ${ }^{\circ} \mathrm{C}$	EIGHT
	from minus 50 to 1800
	(depending on the type of thermocouples)
Minimum grade value, ${ }^{\circ} \mathrm{C}$	0.1 (1 for THERMOELECTRIC
	COUPLES)
Number of decimal places to display	4
Limit of permissible main consolidated error of	
Duration of the measured value indication	
on one channel (programmable), s	from 1 to 4
Number of archive points for measured values on	
each channel, no less	1500
Archiving period, min.	from 1 to 180
Supply voltage, V, Hz	$220{ }^{-33}+22,50 \pm 1$ (or oth.)
Power consumption, no more than, W	3
Overall device dimensions	72x72x121
mounting	panelboard
mounting depth	113
Overall dimensions of the switching units: БКТО	90x107x65
БКПТ,БКВП	$90 \times 70 \times 65$
channel output units	$90 \times 138 \times 62$
mounting	on DIN rail

PROGRAMMABLE CONTROLLER-METTER OF TYPE PT-0102ח

(TУ У 33.2-04850451-068-2003)
Designed to control a multistage temperature in the furnaces, cryo-freezers, brewing (pasterization) and other technological processes (4 programs in 60 steps (sections) each).

Adjustment: PID, two, three-position, gate valves and three-way valves.
Service: alarm function for deviations beyond the set limits and end the program. Continuation of the unfinished process after the supply stop. Interfaces RS232L, RS485 (allow to connect 32 devices into a network). Archiving of measurement results in its own energy-independent network (up to 10... 20 thousand results). Work with graphic touch panel.

Software:

For Real-Time Mode

For Data Archiving

Remote control of program number setting and program start/ stop.
Possibility of inclusion in SKADA system.
Inputs: THERMOCOUPLE OF RESISTANCE , thermocouples, DC signals or voltage signals.
Outputs: relays, triacs (thyristors) single or three phase, analog, alarm relays and the end of the program.

Examples of application: crucible furnace, muffle furnace, cryo-freezer, pasteurizer.

TEMPERATURE SIGNALING DEVICE (ALARM)
CT-136M (TY 25-7558.003-87)
Designated to monitoring and signaling the bearing temperature of the pump unit and oil in the pump housing at eight points. Working in set with THERMOCOUPLE OF RESISTANCE .

Operational range of controlled temperatures, ${ }^{\circ} \mathrm{C}$
Designation of NSC
Limit permissible value of the basic error, \%, no more
Response time, s, no more
Number of discrete alarm setpoints, no more
Temperature difference between the knobs, ${ }^{\circ} \mathrm{C}$, no less

Alarm power supply: - voltage, V frequency, Hz

Output signal - in the form of contact output of the signal relay with switching capacity at voltage, V

Input electrical circles - intrinsic safety with level of explosion protection "ів"
Weight, kg, no more

From 30 to 180
50П, 100П, 50M
± 1

1

8

4
$220+22$
50 ± 1^{-33}

20 VA
220 V; 50 Hz

TEMPERATURE SIGNALING DEVICE (ALARM)

CTC-0189M (TV 25.7363.073-90)
Designed for automatic temperature control in eight channels and output temperature values beyond the permissible limits.

Range of controlled temperatures, respectively, for $\mathrm{NSC}{ }^{\circ} \mathrm{C}$:

50M, 100M
50П, 100П, Pt50, Pt100
K
L
S, R
гр. 21
гр. 23
Mode of alarm device operation:
Individual values of alarm and alarm temperature settings for each channel, sensor type, hysteresis

RS-485 interface;
Switching capacity of relay output contacts ("Warning",
"Accident", "Open circuit/Short circuit")
Over-temperature alarm
Resolution of temperature setting, , ${ }^{\circ} \mathrm{C}$
Range of hysteresis coefficient variation, ${ }^{\circ} \mathrm{C}$
Alarm power supply, V
Weight, kg, no more
Overall dimensions, mm
from minus 50 to 200
from minus 60 to 600
from 0 to 1200
from 0 to 800
from 0 to 1500
from minus 180 to 600
from minus 50 to 200

0,1 A, 220 V

0.1

from 0 to 200
from 90 to 250
0.5
$96 \times 96 \times 110$

TEMPERATURE CONTROL SYSTEM OF MOLTEN METALS CKTP-0597

Designed to measure the temperature of molten metals by contact method with the help of immersed thermocouple and alarm about the progress of the measurement process. Measurement process control is carried out by microprocessor.

Designation of NSC if thermoelectric converter

Range of measured temperatures, ${ }^{\circ} \mathrm{C}$
Measurement error of the digital device, no more, ${ }^{\circ} \mathrm{C}$
Number of decimal places to display
Supply
Ambient temperature, ${ }^{\circ} \mathrm{C}$
Weight of digital device, kg , not more

B, S, R, A and K

from 800 to 1800
1
4 (digit height 40 mm)
$\mathbf{2 0}_{-33}^{+22}$ V, 47-63 Hz
from 0 to 50 (from minus 40 to $50^{\circ} \mathrm{C}$ - individual design)

5

CKTP-0597 system is easy to use.
After connecting the thermoelectric couples green light is lit, which indicates the readiness for measurement. The temperature close to the set value is indicated by a yellow lamp (measurement) when the temperature transmitter reaches the set value.

After the end of the measurement process, which lasts a few seconds, the red warning lamp and, briefly, an audible alarm are activated. The digital display shows the measured value of the molten metal temperature, which is stored until the next measurement.

System CKTP-0597 provides archiving of measurement results and time of their carrying out in nonvolatile memory. Archived data can be output to the indicator or to a PC via RS232 or RS485 line.

Fig. 1 - External View of CKTP-0597

SECTION VII

INFRARED THERMOMETERS (PYROMETERS)

STATIONARY PARTIAL RADIATION PYROMETERS

«СМОТРИЧ-8» (ТУ У 33.2-04850451-038:2006)
Designed for non-contact temperature measurement in various industrial processes. Also provide a wide range of service functions that help to control product quality, reduce energy costs.

Stationary pyrometers consist of pyrometric (ПП) and measuring (ПВ-6) converters connected by with electric cable.

Stationary pyrometer provides the following service functions:

- measurement and digital display of the current, maximum, minimum or average temperature, measured for a given period of time t ;
- digital display of maximum or minimum or the difference between the maximum and minimum temperature value, measured from the turn on the pyrometer;
- installation and digital control of the emissivity value of the object from 0.1 to 1.0 with a resolution of 0.01 ;
- availability of integrator with variable integration time from 0 to 100 s ;
- availability of detector of maximum values with a set time of information update from 0 to 100 seconds;
- possibility of increasing the resolution of temperature measurement by narrowing the boundaries of the temperature range.
- three-position relay controller with setting values "less" - "zone" - "more" with permissible electrical loads of $220 \mathrm{~V}, 50 \mathrm{~Hz}, 0.5 \mathrm{~A}$.
- digital output to computer via RS-232 or RS-485 interface;
- analog output - current 0-5 mA or 4-20 mA at the operator's choice.

Technical characteristics of stationary pyrometers can be changed according to the requirements of a customer.

ПП Type and Execution	Operational Range of Measured Temperatures, ${ }^{\circ} \mathrm{C}$	Operating Spectral Range, $\mu \mathrm{m}$	Limit of Permissible Basic Error, \%	Visual Index, Nominal Value	Working Distance, mm	Indicator Type	ПП Dimension $\mathrm{L} / \mathrm{D}^{* *}$
ПЧД-131							
00	800 ... 1300	0,7-1,1		1/100			
01	1000 ... 2000	0,7-1,1		1/200			
02	1500 ... 2500	0,7-1,1	$\pm 1,0 \%$ *	1/300	1000 ± 20	Optical	250/50
03	450 ... 750	0,8-1,8		1/50			
05	600 ... 1300	0,8-1,8		1/200			
06	1100 ... 1700	0,8-1,8		1/300			
ППТ-131							
00	100 ... 400	0,4-9,0	$+6^{\circ} \mathrm{C}$	1/20		Laser	180/50
01	300 ... 600	0,4-9,0	$\pm 8^{\circ} \mathrm{C}$	1/25	1000 ± 20	Laser	255/50
03	400 ... 1500	0,4-4,0	$\pm 1,0 \% *$	1/50		Optical	305/50
05	900 ... 2000	0,4-4,0	$\pm 1,0$ \%*	1/100		Optical	305/50
07	1000 ... 2500	0,4-2,5	$\pm 1,0 \%$ *	1/100		Optical	305/50
ПЧР-161	250 ... 700	1,8-3,8	$\pm 1,0 \% *$	1/150	600-10000	Optical	303/63

* - Deviation is calculated in percents of the maximum value of the temperature range.
** - L - sensor length; D - sensor diameter.

Pyrometric Converter (III)

Measuring Converter (ПВ-6)

Overall Dimensions, mm-162 x 67×200.

When the ambient temperature is above $40^{\circ} \mathrm{C}$ for pyrometric converter is necessary to use the cooling device with slip stream (water or air). Ordered separately, depending on ПП performance.

Designed for non-contact measurement and temperature control in various processes in metallurgy, glassmaking, foundry, chemical, paint, mining industries, to control the heating temperature of high-voltage contact joints, insulators, control of rotary furnaces lining, heat leakage of buildings and heating mains, in agriculture, in the food industry and everyday life.

Portable pyrometers provide the following functions:

- measurement of current and maximum temperature values;
- temperature indication on the display in digital form;
- determination of the object emissivity by a known value of its temperature;
- laser or optical guidance on the object;
- adjustable emissivity.

Overall dimensions $70 \times 210 \times 260 \mathrm{~mm}$.
Weight, no more, $1,4 \mathrm{~kg}$.
Durable metal body.
The order of such additional service functions is possible:

- digital output to computer via RS-232 interface;
- memory of 250 temperature values.

Model	Operational Range of Measured Temperatures, ${ }^{\circ} \mathrm{C}$	Operating Spectral Range, $\mu \mathrm{m}$	Limit of Permissible Basic Error	Indicator Visualizing, Nominal Value	Working Distance, m	Time of Indicators Determination, S	Indicator Type
Смотрич-4ПМ 1 -							
-02	$30 . . .1100$		$\pm 1,5 \%$ *	1:25	0,6 ... 15,0	1.0	
-06	100 ... 1300		$\pm 1,5 \%$ *	1:25	0,6 ... 15,0	1.0	Laser
-07	$300 \ldots 1400$		$\pm 1,5 \% *$	1:25(1:50)	0,6 ... 15,0	1.0	
Смотрич-5 ПМ1 -							
-01	900 ... 2400			1:250	2,0 ... 15,0	1.0	
-02	1000 ... 1500			1:150	1,0 ... 15,0	1.0	
-03	600 ... 1500		± 1.0 \%*	1:250	2,0 ... 15,0	1.0	Optical
-04	$700 . .1700$			1:250	2,0 ... 15,0	1.0	
-05	$800 . .2000$			1:250	2,0 ... 15,0	1.0	

* - Deviation is calculated in percents of the maximum value of the temperature range.

Смотрич-4ПМ1

Смотрич-5ПМ1

PORTABLE INFRARED THERMOMETERS PYROMETERS «СМОТРИЧ-4ПМ1-08», «СМОТРИЧ-4ПМ1-09» (ТУ У33.2-04850451-068-2001)

Designed for non-contact measurement of bodies temperature in the range from minus 30 to $900^{\circ} \mathrm{C}$. Manufactured in a compact, durable and ergonomic plastic case. Designed for use in microclimatic areas with a temperate climate; resistant to ambient temperatures from 0 to $50^{\circ} \mathrm{C}$ and relative humidity up to 80% at $35^{\circ} \mathrm{C}$ and lower without condensation; withstand vibration at a frequency of 25 Hz amplitude of not more than 0.1 mm .

Pyrometers are equipped with a liquid crystal indicator and provide memorization of the maximum temperature value in the last measurement cycle, in addition, the model «Смотрич-4ПМ1-09» has the memorization of the minimum temperature value in the last measurement cycle, displaying the average temperature for the measurement cycle, the temperature difference between the set value and the current and provides alarm when exceeding the specified temperature levels (high temperature alarm, low temperature alarm).

Pyrometer «Смотрич-4ПМ1-08» has a fixed coefficient of emissivity of the material: 0.95.
Pyrometer «Смотрич-4ПМ1-09» has an adjustable coefficient of emissivity of the material in the range from 0.1 to 1.00 , and also provides storage in the internal non-volatile memory up to 12 temperature values.

Pyrometers are equipped with a laser pointer with a power of less than 1 mW .

Смотрич-4ПМ1-08

Смотрич-4ПМ1-09

PYROMETRIC CONVERTER WITH UNIFIED ANALOG OUTPUT ПП-у

Pyrometric converter ПП-У is used as an infrared sensor with unified analog output 4... 20 mA and digital RS-485 for non-contact measurement of surface temperature of solids (including bulk) bodies and melts of various materials and in various industrial processes by their own thermal radiation.

Total range of measured temperatures, ${ }^{\circ} \mathrm{C}$	from minus 30 to 2400
Visualizing indicator	from 1:20 to 1:250
Distance to the measurement object (with guidance), m	from 0,6 to 15 m
Setting range of emissivity coefficient	from 0,1 to 1,0
Error from the upper value of the measured temperature	1-2 \%
Supply	24V
Functionality:	
Analog output	$4 . . .20 \mathrm{~mA}$
PC communication interface for data transmission and in	nt setup (RS-485).

SECTION VIII

SPECIAL PURPOSE DEVICES

Special purpose devices

Device Type and TY	Purpose and Technical Characteristics
Thermocouples of resistance ТСП-037ДМ1 ТУ В 25-7363.047-89	Designed to measure the temperature of liquid of brand "40" and " 65 " water with anti-corrosion additive, oil of type МТ-8П, ТСЗП-8, М16ИХП-3, М8В2С. Designation of NSC 100П. Range of measurements, ${ }^{\circ} \mathrm{C}$ from minus 220 to 200. Material of protective reinforcement (armature) steel 12 X18 H9 T
Thermocouples of resistance ТСП-772-02 ТУВ .25-04111-82	Designated to measure the temperature of gaseous and liquid media in hazardous areas. Range of measurement temperatures, ${ }^{\circ} \mathrm{C}$: (depending on design) from minus 200 to 200 ; from minus 50 to 75. Designation for NSC 50 П гр. 21. Material of protective reinforcement (armature): $08 \mathrm{X} 18 \mathrm{H10T}$, 12X18H10T
Thermocouples of resistance ТСП-5480 ТУ В 311-4850458.080-90	Designed to measure fuel temperature, with three sensing elements in one zone. Range of measurements, ${ }^{\circ} \mathrm{C}$ from 0 to 50. Designation for NSC 100Π. Material of protective reinforcement (armature) steel 12X18H10T
Thermocouples of resistance ТСП-6099 ТУ В 25-7558.010-87	Designed to measure the temperature of air and sea water. Range of measured temperatures, ${ }^{\circ} \mathrm{C}$: air temperature minus 40 to 50 ; water temperature minus 2 to 35 . Designation for NSC 50 П гр. 21. Material of protective reinforcement (armature) steel 12 X 18 H 10 T
Thermocouples of resistance ТСП-6288 ТУ В 25-7363.072-90	Designed to measure air temperature. Range of measurement temperatures, ${ }^{\circ} \mathrm{C}$ from minus 50 to 50 . Designation for NSC 50 Π. Material of protective reinforcement (armature) steel
Thermocouples of resistance ТСП-8040 ТУ В 25-04.4110-84	Designed to measure the temperature of distillate, bidestilate of fresh and sea water, oil, steam, air, fuel, special alloys, polymer glycerin paste, halocarbon 12, 22, 502, freon and FNGI, oxygen, carbon dioxide with vapors of МЗЗДА, sulphuric acid mist, analyte, exhausts. Designation of NSC - 50 П, 100 П. Range of measurements, ${ }^{\circ} \mathrm{C}$ from minus 200 to 500 (depending on design). Material of protective reinforcement (armature) steel 08 X18H10T, alloy 3M, 7M, bronze БрАЖНМц 9-4-4-1 (depending on the version).

Device Type and TY	Purpose and Technical Characteristics
Thermocouples of resistance ТСП-8041 ТУ В 25-04.4110-84	Designed to measure the temperature of fresh water, air, condensate, gas, electrolyte, carbon dioxide with vapors of МЗЗДА, aqueous solution of carbonate and bicarbonate, sea water. Designation of NSC 50П. Range of measurements, ${ }^{\circ} \mathrm{C}$ from minus 50 to 300 . Material of protective reinforcement (armature) steel 08 X18H10T, alloy 3M, 7M.
Thermocouples of resistance ТСП-8042	Designed to measure the temperature of high purity water, distillate, protective covers of special devices, solid bodies. Designation of NSC 50П, 100П. Range of measurements, ${ }^{\circ} \mathrm{C}$ from minus 50 to 400. Material of protective reinforcement (armature) steel 08 X 18 H 10 T , steel 12 X 18 H 10 T (depending on the version).
Thermocouples of resistance ТСП-8043	Designed to measure the temperature of bearings and oil in them. Designation of NSC 50П, 100П. Range of measurements, ${ }^{\circ} \mathrm{C}$ from minus 50 to 120 . Material of protective reinforcement (armature) steel
Thermocouples of resistance ТСП-8044	Designed to measure the temperature of pipeline walls. Designation of NSC 50П. Range of measurements, ${ }^{\circ} \mathrm{C}$ from minus 50 to 400. Material of protective reinforcement (armature) steel 08X18H10T.
Thermocouples of resistance ТСП-8045	Designed to measure the temperature of air, steam, oil and sea water. Designation of NSC 50П. Range of measurements, ${ }^{\circ} \mathrm{C}$ from minus 50 to 100 . Material of protective reinforcement (armature) steel
Thermocouples of resistance ТСП-8050 ТУ В 25-7558.010-87	Designed to measure the temperature of air and sea water (shet-term). Range of measured temperatures, ${ }^{\circ} \mathrm{C}$: air temperature minus 40 to 40; water temperature minus 2 to 35 . Designation for NSC 50 П гр. 21. Material of protective reinforcement (armature) steel 12 X 18 H 10 T , alloy 3 M .

Device Type and TY	Purpose and Technical Characteristics
Thermoelectric Couples TXA-0384 TУ B 25-04.4112-84	Designed to measure air temperature, argon in process connectors, immersed in special media. Range of measured temperatures, ${ }^{\circ} \mathrm{C}$ from 0 to 600 ; Designation of NSC - K. Material of protective reinforcement (armature) steel 12X18H10T.
Thermoelectric Couples TXA-0394 ТУ B 25-04.4112-84	Designed to measure air temperature, argon in process connectors, immersed in special media. Range of measured temperatures, ${ }^{\circ} \mathrm{C}$ from 0 to 600; Designation of NSC - K. Material of protective reinforcement (armature) steel 12X18H10T.
Thermoelectric Couples TXA-0404 ТУ B 25-04.4112-84	Designed to measure air temperature, argon in process connectors, immersed in special media. Range of measured temperatures, ${ }^{\circ} \mathrm{C}$ from 0 to 600 ; Designation of NSC - K. Material of protective reinforcement (armature) steel 12 X 18 H 10 T .
Thermoelectric Couples TXA-742, ТХК-742 ТУ В 25-04.4112-84	Designed to measure the temperature of air, argon, liquid metal alloys in one, two or three zones. Letter Designation of NSC: TXA-742 K TXK-742 L Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$: TXA-742 from 0 to 600 TXK-742 from 0 to 500 Material of protective reinforcement (armature) steel 1Х15Н9С3Б1(3П- 302), 12X18H10T.
Thermoelectric Couples TXA -1072, ТХК -1072 ТУ В 25-04.4112-84	Designed to measure the water temperature, high purity water, distillate, bidistillate, protective covers in power plants for special purposes. Range of measurements, ${ }^{\circ} \mathrm{C}$ from 0 to 500 (depending on design). Letter designation of NSC TXA-1072 - К; TXК-1072 - L.

Device Type and TY	Purpose and Technical Characteristics
Thermoelectric Couples TXA -1172, ТХК - 1172 ТУ В 25-04.4112-84	Designed to measure the temperature of water, steam, vapor, gas, helium, argon, exhaust gases. Range of measured temperatures, ${ }^{\circ} \mathrm{C}$ TXA-1172 from 0 to 700 ТХК-1172 from 0 to 500 Letter designation of NSC TXA - 1172 - K; TXK -1172-L. Material of protective reinforcement (armature) steel 10X17H13M2T, 12X18 H10 T, 12 X18H9T.
Thermoelectric Couples TXA-1874, TXK -1874 ТУ В 25-04.4112-84	Designed to measure air temperature. Designation of NSC: TXA -1874-K; ТХК -1874-L. Range of measurements, ${ }^{\circ} \mathrm{C}$ from 0 to 600 (depending on design). Material of protective reinforcement (armature) steel
$\begin{aligned} & \text { ПКТ-40 С, ПКТ-40 Т } \\ & \text { ТУ В25-04(5 Ц2.827.001)-84 } \end{aligned}$	Temperature control devices are designated to convert the signals of THERMOCOUPLE OF RESISTANCE (ПКТ-40 C) and THERMOELECTRIC COUPLES (ПКT-40 T) into unified DC output signal with a voltage (0-5) V, or (0-10) V.
ИПС-1, ИПС-1К, ИПТ-1, ИПТ-1К ТУ В 25-04(5Ц0.203.023)-84	Measuring converter ИПС-1 (device in casing) and ИПС -1 К (cassette) are designed to convert the signal of Thermocouples of resistance of NSC-50 Π. in unified DC output signal with voltage (0-5) V or $(0-10)$. In the range -50 to $600^{\circ} \mathrm{C}$ with a measurement error of $\pm 1 \%$. Measuring Converter ИПТ -1 (device in casing) and ИПС -1К (cassette) are designed to convert the signal of THERMOELECTRIC COUPLES - TXA or TXK (NSC К or L) in a unified DC output signal with voltage (0-5) or (0-10) In the range of $0-800^{\circ} \mathrm{C}$ with a measurement error of $\pm 1 \%$.
$\begin{aligned} & \text { ПС }-052-01 \mathrm{P} \div 04 \mathrm{P}, \\ & \text { ПС-062-01P } \div 04 \mathrm{P} \\ & \text { ТУ } 25-02.1826-75 \end{aligned}$	Measuring converters are designated to convert the value of thermoelectric couple with NSC 50Π into unified DC signal $(0-50) \mathrm{mV}$ at load resistance a) $50 \wedge 300 \mathrm{KOhm}$ b) $300 \mathrm{kOhm} \div$ ∞

Device Type and TY	Purpose and Technical Characteristics
$\begin{aligned} & \text { ПЭН-022P, ПЭН-022-01P } \\ & \text { ТУ 25-02.1828-75 } \end{aligned}$	Measuring converters are designated to convert signals of THERMOELECTRIC COUPLES with NSC K in unifies DC output signal with voltage ($0-5$) V or $(0-10) \mathrm{V}$ with load resistance (3-10) kOhm. ПЗН-022P works with КС-419, ПЗН-02201P with КС-501.
$\begin{aligned} & \text { ИПС-2К } \\ & \text { ТУ В.25-7558.015-87 } \end{aligned}$	Measuring converter is designated to convert signals from resistance thermal convertors (NSC 50Π or $\mathrm{R}_{0}=46$ Ohms) into unified output DC signal with voltage (0-5) V or (010).Power supply of ИПС-2К $220 \mathrm{~V}, 400 \mathrm{~Hz}$.
$\begin{aligned} & \hline \text { ПКТ-04С, ПКТ-04Т } \\ & \text { ТУ В25-04(5Ц2.827.001)-84 } \end{aligned}$	Temperature control devices of ПКТ-04С and ПКТ-04Т are designated for continuous operation alarm of exceeded or decrease in temperature relative to the preset at the control points. Range of alarm from minus 3 O to $500^{\circ} \mathrm{C}$ (ПКТ-04C) and from 0 to $900^{\circ} \mathrm{C}$ (ПКТ-04Т)
CTC-1, СTC-1К, CTT-1, CTT1K ТУ В25-04(5Ц0.299.020)-84	Alarm devices are designated for continuous one-position signaling of exceeding or decreasing the temperature relative to the set in the control points by switching the contacts of the output relays of the signaling devices included in the external electric circle. Range of alarm from minus $3 \mathrm{O}^{\circ} \mathrm{C}$ to $500^{\circ} \mathrm{C}(\mathrm{CTC}-1$ i CTC-1 K) and from $0^{\circ} \mathrm{C}$ to $900^{\circ} \mathrm{C}$ (for CTT-1, CTT-1 K)
TCTП-071M1 ТУ B311.4850458.082-91	Thermo kit ТСТП-071M1 consists of alarm СТП-082M1, junction box KС-429M1 and 3 displaying devices M1618, designated to control the uniformity of temperature field, control the average temperature field and sample temperature control ${ }_{\text {I EACH }}$ of the 3 control points. Range of controlled temperatures from $0^{\circ} \mathrm{C}$ to $1100^{\circ} \mathrm{C}$. Thermo kit works along with THERMOELECTRIC COUPLES NSC - K

Device Type and TY	Purpose and Technical Characteristics
$\begin{aligned} & \text { CT-042 } \\ & \text { ТУ 25-02.1886-75 } \end{aligned}$	Alarm average temperatures kit CT-042 consists of alarm CT-642, junction box KC-212 2 displaying devices milliampermeters M1618. Kit is designated to measure and alarm (warning and emergency) the average temperature values at one point. Kit works with four THERMOELECTRIC COUPLES NSC-K. Measurement limits from 0 to $1100^{\circ} \mathrm{C}$, supply voltage - $24 \pm 2,4 \mathrm{~V}$.
$\begin{aligned} & \hline \text { CT-201 } \\ & \text { TУ 25-02.1714-74 } \end{aligned}$	Temperature alarm CT-201 is designated to: - alarm of controlled medium temperature rise by converter of fire alarm system ППС-01К when it reaches the value of thermo e.p.c. $(\mathrm{K} 0 \pm 5) \mathrm{mV}$; - activation of fire extinguishing control system; - alarms about the presence of breakage or short circuit in the converter circuits. Basic error of the alarm $\pm 5 \mathrm{mV}$
$\begin{aligned} & \hline \text { РТИ-012 } \\ & \text { ТУ 25-02.19К5-76 } \end{aligned}$	Kit of object temperature field regulator consists of a temperature controller РТИ-012, coupling device УС-491 and 2 displaying devices - milliampermeters M1618. Regulator is designated to regulate and measure the temperature of the object in the range from 0 to $900^{\circ} \mathrm{C}$. Regulator works with THERMOELECTRIC COUPLES NSC-K.
$\begin{aligned} & \hline \text { PT-016M } \\ & \text { TY 25-02.902-7K } \end{aligned}$	Temperature regulator PT-016M designated for air temperature control (stabilization) with accuracy of ± 0.1 ${ }^{\circ} \mathrm{C}$ at the installation location of the sensing element in the objects with a time constant of from 50 to 200 min in the temperature range from 5 to $40^{\circ} \mathrm{C}$. Regulator is complete with Thermocouples of resistance ТСП-5082M. Range of controlled temperature from 20 to $60^{\circ} \mathrm{C}$.
КСИ-01-615 ТУ 25-02.792121-80	Kit of alarms and voltage, temperatures measurement and metering КСИ-01-615 consists of alarm МСП-01-6155, junction box KC-567, 2 displaying devices milliampermeters M1618-1 - with scale $0-5 \mathrm{~V}, 2$ - with scale $0-100^{\circ} \mathrm{C}$ and 4 THERMOCOUPLE OF RESISTANCE ТСП-288M. Kit is designated to alarm of voltage deviation and temperature excess from the set values of the four controlled elements of the battery

Device Type and TY	Purpose and Technical Characteristics
CBP-018 ТУ У33.2-04850451-075-2004 (to replace TУ 25-02-1176-73)	Kit CBPR-018 consists of multi-level temperature alarm СТ-198, time meter ИВ-108 and junction box КС-418. Remaining life summator instrument CBP-018 is designated to summarize the time of gas turbine operation in different temperature conditions. Summator instrument works along with THERMOELECTRIC COUPLES NSC - K
ДТИ-014Р ТУ 25-02.1734-74	Angular velocity converter ДТИ-014P is designated for the continuous conversion of mechanism shafts angular speed in an electric AC signal with frequency proportional to the angular velocity in the range from 0 to 15000 rpm . The output signal on frequency range is from 0 to 500 Hz . Range of output signals by e. p. s. is from 0 V to 30 V , on frequency - from 0 to 600 Hz .
ДТЕМ-024Р ТУ 25-02.1733-74	Angular velocity converter ДГЕМ-024P is designated for the continuous conversion of mechanism shafts angular speed in an electric AC signal with frequency proportional to the angular velocity in the range from 0 to 4000 rpm . The output signal on frequency range is from 0 to 66.7 Hz . The output signal on electromotive force is from 0 to 15 V .
ДТЕ-042P ТУ 25-02.1732-74	Angular velocity converter ДГЕ-042P is designated for the continuous conversion of mechanism shafts angular speed in an electric AC signal with frequency proportional to the angular velocity in the range from 0 to 5000 rpm . The output signal on frequency range is from 0 to 416.7 Hz. The output signal on electromotive force is from 0 to 220 V .

OTHER DEVICES

DEVICE FOR HUMIDITY AND AIR TEMPERATURE MEASURING (REGULATING)

Designated for operational measurement of temperature, relative air humidity. Completeness: regulator of type PT-0102 and air humidity and temperature thermoelectric couples.

Range of measured relative humidity, \%
Range of measured temperatures, ${ }^{\circ} \mathrm{C}$

Limit permissible absolute error of measured relative humidity, \%

Limit permissible absolute error of measured air temperature, ${ }^{\circ} \mathrm{C}$

Supply voltage, V
from DC power supply
from AC network with frequency 50 Hz

Window marking on the panel


```
from 0 to 99 (without
condensation)
from minus }10\mathrm{ to }6
from minus 19 to 85
(depending on converter body
material)
\pm3
```

$\pm(1+0,011 \mathrm{~T} \mid), \mathrm{T}$ - air temperature

24(12) 220(36)

Humidity and temperature converter $\left(-40 \ldots 65^{\circ} \mathrm{C}\right)$

Regulator of type PT-0102 (Щ1)

THERMOHYGROMETER BT-1

Designated for operational measurement of temperature, relative air humidity.
Thermohygrometer consists of a digital instrument, temperature and humidity converter and (or) thermoelectric couple of characteristics Pt 1000.
Measuring range of digital device
for relative air humidity
for temperature
Operating range of temperature converter and relative air humidity*

* depending on body material
from 0 to 100\%
from minus 50 to $600^{\circ} \mathrm{C}$

Value of the lowest digit (discreteness):
for relative air humidity for temperature:
in the range from minus $50^{\circ} \mathrm{C}$ to $199,9^{\circ} \mathrm{C}$
in the range from $200^{\circ} \mathrm{C}$ to $600^{\circ} \mathrm{C}$
Kit error when measuring relative humidity
Kit error when measuring temperature
in the range from minus $50^{\circ} \mathrm{C}$ to $199,9^{\circ} \mathrm{C}$ in the range from $200^{\circ} \mathrm{C}$ to $600^{\circ} \mathrm{C}$

Supply voltage, V

```
\pm1 }\mp@subsup{}{}{\circ}\textrm{C
\pm0,011 T | }\mp@subsup{}{}{\circ}\textrm{C
T-air temperature
```

7...11, galvanic battery of type «Krona»

Design and characteristics are subjects to change.

[^1]
THERMOHYGROMETER BT-1P

Designated for operational measurement of temperature, relative air humidity and dew point determination. Thermohygrometer consists of a digital device ПВТ - temperature relative air humidity converter (hereinafter converter). Can work with a separate thermal converter of type TO-010 (NSC Pt 1000 (W=1,385)).

Range of measured humidity, \%
Range of measured temperatures, ${ }^{\circ} \mathrm{C}$
Range of dew determination, ${ }^{\circ} \mathrm{C}$
Basic error of humidity measurement, \%
Basic error of temperature measurement, ${ }^{\circ} \mathrm{C}$
Error of dew point determination, ${ }^{\circ} \mathrm{C}$
Value of the lowest humidity digit, \%

Value of the lowest temperature digit, ${ }^{\circ} \mathrm{C}$

Value of the lowest temperature digit, ${ }^{\circ} \mathrm{C}$
Supply voltage, V

Overall dimensions of the digital device, mm
Average service life, years
*Design and characteristics are subjects to change.
from 0 to 100*
from minus 40 to 85
from 0 to 60
$\pm(3+C N R)$
$\pm(0.5+C N R)$
$\pm 0,8$
1

0.1

0.1

from 7 to 11 , galvanic battery of type «Krona»
$37 \times 75 \times 170$

8

1 - indicator BT-1P;
2 - power on / off button;
3 - mode switching button (temperature, relative humidity, dew point);
4 - relative humidity and temperature converter;
5 - converter connector.

Designated to automatic control of the heat generator (sawdust, chopped straw, etc. heater) by adjusting the feed rate (screw) and blower (fan). Alarm system is provided.

Included in the State register of measuring equipment at number У2454-07.

Number of input channels
Works in complete with TO THERMOCOUPLE OF RESISTANCE .
Absolute measurement error
Number of outputs
Outputs:

Supply
Degree of protection
Overall dimensions, mm

1

100П; 50П; 100M; 50M; Pt100
$1^{\circ} \mathrm{C}$
3
electromagnetic relay PE (for
switching 1A (up to 8A) at 220 V); other options are possible

220 (9..24)AC or 12..36V DC
on front panel IP 54
$80 \times 40 \times 107$

Combustion Process Control Scheme

$T<$ To		$T>T o$	
t_{1}	t_{2}	t_{3}	t_{4}
screw is activated	screw is disactivated	screw is activated	screw is disactivated
fan is activated	fan is activated	fan is activated	fan is disactivated

T_{0} - value of temperature to be maintained;
t_{1} and t_{2} - duration of screw (feed) on and off at $T<T_{0}$;
t_{3} and t_{4} - duration of screw (feed) on and off at $T>T_{0}$.
Values of $t_{1}, t_{2}, t_{3}, t_{4}$ are selected in the range of $0 . .200$ seconds.
tsHi - alarm upper set point;
tslo - alarm lower set point.
Output "screw" (7, 8) — relay contacts are closed for a time t_{1} and t_{3} Simultaneously lights up the top led.

Output "fan" (9,10) - relay contacts are closed for time t_{1}, t_{2} and t_{3}. At the same time the lower led lights up.
"Alarm" output (5,6) — relay contacts closed at $\mathrm{t}<$ tslo and $\mathrm{t}>\mathrm{tsHi}$. At the same time, the decimal point in least significant bit lights up.

Case Щ1 (window size on panel 76x35\}

REFERENCE THERMOELECTRIC COUPLES OF TYPE ППЕ

Reference thermoelectric couples platinum-rhodium-platinum of type ППЕ of 1,2,3 bits is designated to use as a reference for calibration works, as well as for accurate measurements of temperature in the air or in neutral medium in the laboratory conditions.

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$ from $\mathbf{3 0 0}$ to $\mathbf{1 2 0 0}$
Limit permissible error, ${ }^{\circ} \mathrm{C}$
(at temperature $1084.62{ }^{\circ} \mathrm{C}$)
1 b.
0.6
2 b.
0.9

3 b .
Length of thermoelectrodes, mm
1.8

1000; 1250; 1600

1. Platinum thermoelectrode
2. Platinum - rhodium thermoelectrode
3. Reinforcing tube $05 \pm 1 \mathrm{~mm}$
4. Nut
5. Collet
6. Cap
7. Electrical insulation tube
8. Adapter

REFERENCE THERMOELECTRIC COUPLES OF TYPE חPE

Reference thermoelectric couples thermoelectric platinum-rhodium-platinum-rhodium of type ПPE of $1,2,3$ bits is designated to use as a reference for calibration works, as well as for accurate measurements of temperature in the air or in neutral medium in the laboratory conditions.

Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$ from $\mathbf{6 0 0}$ to $\mathbf{1 8 0 0}$
Limit value of the confidence error with a confidence probability of 0.95 is, K

1 b. 2.5
2 b .
4
3 b .
10
Length of thermoelectrodes, mm
1250; 1600

1. Negative thermoelectrode (platinum-rhodium wire $\Pi \mathrm{P} / 60,5$)
2. Positive thermoelectrode (platinum-rhodium wire ПP-30 0,5)
3. Reinforcing tube $05 \pm 1 \mathrm{~mm}$
4. Nut
5. Collet
6. Cap
7. Electrical insulation tube
8. Adapter

INTRINSIC SAFETY BARRIER TФ-3388

Designated to ensure intrinsic safety of electrical circuits of various converters and current sources that are in an explosive zone.

Limits of permissible parameters in the explosive zone (terminals 3, 4):

$$
\text { inductance, Henry , no more } 5 \times 10^{-3}
$$

capacity, mF, of no more
7
Absence of own non-intrinsically safe current sources
Rated fuse current, mA 20

Leakage current between input (output) terminals at a voltage of 1 V , mA, no more

Permissible short-circuit current between terminals 3-6 and 4-6, A, no

Degree of protection from solid bodies penetration

Fig. 1 - External View

Fig. 2 - Electrical Diagram

ELECTRONIC SENSORS OF WHEEL PAIRS PASSAGE FIXATION ДE-96

Sensors are designated to generate a pulse of electric current at the time of fixing the moving unit wheel passage.

Sensors are designated to use in devices "ПОНАБ" , "ДИСК", "ГАЦ" etc.
Sensor Operating Conditions:
ambient temperature - from minus 40 to $60^{\circ} \mathrm{C}$ air relative humidity - up to 100%
atmospheric pressure - from 66 to $106.7 \mathrm{kPa}(495-800 \mathrm{~mm} \mathrm{Hg})$ mechanical loads - according to the group MC5 РД32 ЦШ 03.07-90

Nominal supply voltage of sensors, $\mathrm{V} \quad 12 \pm 1$

Output signal of the sensor of mobile unit wheel fixing, mA $\mathbf{3 , 5} \pm \mathbf{1}$

Insulation resistance between sensor body and electrical terminals at a temperature of $20^{\circ} \mathrm{C}$ and relative humidity 80%, MOhm, 40 no less

Overall dimensions of the sensor (without bracket), mm, no more,
Sensor weight (without bracket and mounting elements), kg, no more
$80 \times 58 \times 25$
0.15

TEMPERATURE CONTROL SYSTEM «POCb-1 M1»

Provides reliable and high-quality storage of grain, bran and other agricultural products in granaries and elevators.

System composition:
Structurally, the system is made in two versions:

- option 1: the system consists of thermal resistance transducers with a pulse output signal TOMI-0591, network adapter AM-01 and personal computer;
- option 2: the system consists of thermal resistance TOM-0591, temperature control devices ПКТ-01, network adapter AM-01 and a personal computer.

Thermocouples TOMI-0591, TOM-0591 have 6 or 12 sensing elements, mounted with a certain step in the armored shielded cable. Cable length - from 10 to 28 m . Cable diameter - no more than 21 mm . Thermocouples withstand the action of breaking force up to 3000 kg .

Technical specifications:
Operational range of measured temperatures, ${ }^{\circ} \mathrm{C}$:

- minimum grade value, ${ }^{\circ} \mathrm{C}$

Designation of NSC * convert of thermocouples TOMI-0591, TOM-0591

Basic error of measurement, ${ }^{\circ} \mathrm{C}$

- the system is set to one set point of the maximum temperature value for all thermocouples with installation discreteness, ${ }^{\circ} \mathrm{C}$
- the system is provided with an alarm when the measured temperature is exceeded from the set point, no more than ${ }^{\circ} \mathrm{C}$
- the system provides temperature measurement for a time that does not exceed, s
- electrical power system - AC, V, Hz

TEMPERATURE CONTROL SYSTEM ON THE BASIS OF PT-102-8

Designated for temperature control in large tanks, granaries, elevators, etc.
System composition:

- measuring eight-channel device PT-0102-8, which measures, archives the temperature, signals the excess temperature on each channel separately, provides communication with the computer via RS232 or RS485 interface;
- multipoint temperature transmitter of type TOM-0591-8, where in the cable of type ПT-8,5-1,2 sensing elements Pt 1000 (up to eight pieces) and the cable for mountingare placed at different distances, can withstand the breaking force of 2000 kg ;

Depending on the volume of the controlled environment , it is possible to use several such systems, that is, increase the number of controlled points to $16,24,32,40$, etc. Program of work with a personal computer allows to exchange with a PC up to 256 PT-0102-8 with communication numbers from 0 to 255. It is possible to change the settings and control parameters of the device from a personal computer.

Number of input channels:
Sensor elements:
Absolute measurement error:
Number of archive points
Archive period
Number of outputs:
Outputs:

Supply:
Front panel protection degree
Overall dimensions, mm: device
switching unit output block
multipoint temperature transmitter

(i) (i)

直PT-0102-8
up to 8
Pt1000
$1^{\circ} \mathrm{C} ; 0.1^{\circ} \mathrm{C}$
1500 per channel
1 - 255 min
10
electromagnetic relay PE (for switching 1A (up to 8A) at 220 V) 220 V, 50 Hz
IP 54
72x72x121
$90 \times 70 \times 65$
$90 \times 138 \times 65$
$21.5 \times 14.5 \times \mathrm{L}$ (depending on the order)

PROTECTIVE CARTRIDGES AND CONNECTORS

PROTECTIVE CARTRIDGE 4.819.015

Used when installing thermocouples at facilities.

Material			L, mm	Weight, kg	Py, MPa	Maximum Flow Rate, m/s	
	Steel	Steel					
Designation	Designation	Designation				Steam	Water
4.819.015	4.819.015-13	4.819.015-26	120	0.27	25	40	4.0
-01	-14	-27	160	0.36			
-02	-15	-28	200	0.39		25	2.5
-03	-16	-29	250	0.44			
-04	-17	-30	320	0.51			
-05	-18	-31	400	0.59			0.5
-06	-19	-32	500	0.69			
-07	-20	-33	630	0.72			
-08	-21	-34	800	0.99			
-09	-22	-35	1000	1.10			
-10	-23	-36	1250	1.45			0.2
-11	-24	-37	1600	1.79			
-12	-25	-38	2000	2.19			
-39	-41		80	0.23		40	4.0
-40	-42		100	0.25			

PROTECTIVE CARTRIDGE 4.819.016

Used when installing thermocouples at facilities.

Material			L, mm	Weight, kg	Py, MPa	Maximum Flow Rate, m/s	
Steel	Steel 12X18H10T	Steel 08X17H13M2T					
08X13							
Designation	Designation	Designation				Steam	Water
4.819.016	4.819.016-05	4.819.016-10	120	0.95			
-01	-06	-11	160	1.03			
-02	-07	-12	200	1.25	50		
-03	-08	-13	250	1.63		100	7.5
-04	-09	-14	320	2.15			

MOVABLE CONNECTOR 4.473.002

Used when installing thermocouples at facilities.

Designation	D, mm	S, mm	Material	Weight not more, g	L, mm	I, mm
4.473 .002	M20x1,5	27	Steel 20X3	135	44	14
-01			Steel12X18H9T			
-02	M27x2	36	Steel 20X13	240	46	16
-03			Steel12X18H9T			

MOVABLE CONNECTOR 4.473.003

Used when installing thermocouples at facilities.

Designation	Material	Weight not more, g
4.473 .003	Steel $12 \times 18 \mathrm{H} 10 \mathrm{~T}$	236

E-mail: thermo@mail.Iviv.ua,
www.thermo.Iviv.ua

SCIENTIFIC AND PRODUCTION ASSOCIATION

3, Naukova str.,
Lviv, Ukraine, 79060
tel: +38 (032) 2630308
fax: +38 (032) 2631361

[^0]: * Marking of terminals (wires) is made in digital, color or other way.

[^1]: 1 - indicator BT-1;
 2 - power on / off button;
 3 - mode switch button (temperature, relative humidity);
 4 - temperature and relative humidity converter;
 5 - converter connector.

